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Modeling approach for estimation of ultimate load capacity of concrete-filled 

steel tube composite stub columns based on relevance vector machine 

Beton-dolgulu çelik tüplü kompozit kısa kolonların nihai yük taşıma 

kapasitesinin ilgililik vektör makinesine dayalı tahmini için modelleme yaklaşımı  

 

Çiğdem Avcı Karataş1,*  

1 Department of Transportation Engineering, Faculty of Engineering, Yalova University, 77200, Yalova, Turkey 

 

Abstract  Özet 

In this paper, the applicability of relevance vector machine 

(RVM) has been explored to predict the ultimate axial load 

capacity of concrete-filled steel tube composite stub 

columns (CFSTCSCs) with circular sections under axial 

compression loadings. As an extension of support vector 

machine, RVM employs Bayesian inference to achieve 

parsimonious solutions for regression and classification. By 

using MATLAB software and 150 comprehensive 

experimental data presented in the previous studies, a 

model to predict the ultimate load of circular CFSTCSCs 

was developed by properly training the data. Utmost care 

has been taken in grouping the data for training and 

validation. About 80% dataset for training and 20% dataset 

for validation have been used, respectively. The results 

show that the predicted ultimate axial compression load 

capacity of CFSTCSC members is comparable with that of 

the corresponding experimental data and the percentage 

difference is about ∓11%. 

 Bu makalede, dairesel kesitli beton-dolgulu çelik tüplü 

kompozit kısa kolonların eksenel basınç yükleri altındaki 

nihai yük taşıma kapasitesini tahmin etmekte ilgililik 

vektör makinesinin (İVM) uygulanabilirliği incelenmiştir. 

Destek vektör makinesinin bir eklentisi olarak İVM, 

regresyon ve sınıflandırmada sağlam çözümler elde etmek 

için Bayesyen yaklaşımını kullanmaktadır. MATLAB 

yazılımı ve 150 adet daha önceki çalışmalarda sunulan 

kapsamlı deneysel veriler kullanılarak ve bu verilerin 

uygun şekilde düzenlenmesiyle, dairesel kesitli beton-

dolgulu çelik tüplü kompozit kısa kolonların nihai yük 

taşıma kapasitesini tahmin etmek için bir model 

geliştirilmiştir. Verilerin düzenleme ve doğrulama için 

gruplandırılmasında azami özen gösterilmiştir. Sırasıyla, 

düzenleme için yaklaşık %80 veri seti ve doğrulama için 

%20 veri seti kullanılmıştır. Sonuçlar, beton-dolgulu çelik 

tüplü kompozit kolon elemanının tahmini nihai eksenel 

basınç yük taşıma kapasitesinin, ilgili deneysel verilerle 

kıyaslanabilir olduğunu ve aradaki yüzde farkının yaklaşık 

∓%11 olduğunu göstermektedir. 

Keywords: Concrete-filled steel tube composite stub 

columns (CFSTCSCs), Ultimate axial load capacity, 

Relevance vector machine (RVM), Nonlinear regression 

algorithm 

 Anahtar kelimeler: Beton-dolgulu çelik tüplü kompozit 

kısa kolonlar, Nihai eksenel yük taşıma kapasitesi, İlgililik 

vektör makinesi (İVM), Lineer olmayan regresyon 

algoritması 

1 Introduction 

Concrete-filled steel tube composite stub columns 

(CFSTCSCs) are being used in the civil infrastructure sector 

such as high-rise buildings, bridges, towers, etc., as they 

offer many structural advantages such as high strength, 

promising ductility, and large energy absorption capacities. 

The enhanced strength and ductility are due to the 

confinement of concrete. CFSTCSCs were used for various 

applications such as (i) retrofitting applications in 

earthquake-prone areas [1] (ii) bridge piers [2]. It was 

understood from the literature that the ultimate load of 

CFSTCSCs largely depends on material properties and steel 

ratio [3, 4] and several cross-sections of CFSTCSCs, namely, 

circular, square and rectangular, etc., were with various 

grades of concrete [5-10]. Design specifications used to 

predict the load capacity of composite stub columns, the 

ANSI/AISC 360–16 [11], and the Eurocode 4 (EC4) [12]. 

The axial compressive stiffness and ultimate capacity are 

the basic properties of CFSTCSCs. In the literature, there are 

different opinions and conclusions about the axial 

compressive stiffness of the stub columns, and one of the 

main reasons may be that researchers used different 

deformation measurement methods for the stub columns 

under axial compressive loading. However, there have been 

very few reports that compare these measurement methods 

for CFSTCSCs.  

It is well known that analytical models are very much 

useful to predict the responses of the structural members. In 

the present scenario, machine learning techniques have 

attracted much importance to develop a model for the 

prediction of the future response. In any machine learning 

model, there are basically two major steps, namely, training, 

and testing. For training the data, mixed data with all 

variations should be required. One should have knowledge 
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of the data preparation for training and testing. From the 

wide literature, it is noted that numerous statistical models or 

metamodels are available for developing the models to 

predict the required response. The models cover artificial 

neural networks, multivariate adaptive regression splines, 

Gaussian regression process, least squares support vector 

machine, relevance vector machine (RVM), and extreme 

learning machine, etc., to develop the models by training the 

mixed data [13-20].  

After carefully study of the above models, it is observed 

that each model has its own advantages and limitations. 

RVM is a revised version of the support vector machine 

(SVM) and a machine learning methodology that uses 

Bayesian treatment to achieve parsimonious solutions for 

regression and classification [21, 22]. RVM is 

conceptualized under a complete probabilistic approach. In 

RVM, weights will be assigned to each dataset based on a 

defined algorithm and relate to hyperparameters. The 

significant feature of the RVM is that it uses very few kernel 

functions so that it will be computationally efficient. RVM 

concepts were used by many researchers in different 

domains for developing a model [23-29]. The applications of 

RVM concepts for the structural engineering domain are 

found to be scarce. When viewed from this aspect, this work 

will be a remarkable contribution to the existing knowledge 

base and engineers about the estimation of ultimate load 

capacity of CFSTCSCs based on RVM. 

In the present study, RVM, one of the sophisticated 

statistical models is proposed to estimate the ultimate load 

capacity of CFSTCSCs with circular sections under axial 

loading by using the features of MATLAB. A dataset 

containing 150 experimental testing results available in the 

literature on CFSTCSC members under axial loading has 

been compiled for the present study. 

2 Experimental dataset  

Many experimental investigations were carried out by 

several researchers on the performance of circular 

CFSTCSCs under axial compression loading. The test 

configuration considered is the uniaxial compression test 

which is schematically depicted in Figure 1. A total of 150 

data with 22 published literature sources has been collected 

from different sources. These experimental studies for 

stub/short CFSTCSCs have been compiled and the 

geometrical parameters, material strengths, and failure loads 

of various circular CFSTCSCs are tabulated in Table 1. It 

can be clearly sighted that the ultimate axial load capacity 

(𝑃u)  is related to several variables such as (i) the outer 

diameter of steel tube, 𝐷 (ii) wall thickness of steel tube, 𝑡 

(iii) unconfined concrete strength, 𝑓𝑐 (iv) Young’s modulus 

of concrete, 𝐸𝑐 (v) yield strength of steel, 𝑓𝑦 (vi) Young’s 

modulus of steel, 𝐸𝑠 (vii) length of circular CFSTCSC, 𝐿 

(viii) confinement factor, 𝜉. Table 1 shows the geometrical 

parameters of CFSTCSCs sections, mechanical properties of 

steel and concrete, confinement factor, and failure load of a 

member under axial loadings. The compiled dataset has a 

wide range of column parameters such as normal to high 

yield strength steels (𝑓𝑦 = 186~853 𝑀𝑃𝑎), normal concrete 

to ultra-high-strength concrete (𝑓𝑐 = 18~193 𝑀𝑃𝑎), the 

outer diameter of circular sections (𝐷 = 60~450 𝑚𝑚), the 

ratio of the outer diameter to the thickness (𝐷 𝑡 = 17~221⁄ ), 

and the ratio of the height to the outer diameter 

(𝐿 𝐷 = 1.8 − 4.9⁄ ), respectively. The aim of the developed 

model in the present research is to provide a unique study to 

the researcher to obtain the decreasing errors, complexity, 

and reducing convergence of scattering amplitudes of 

numerical results to the experimental ones that can be an 

alternative to experimental studies and to estimate the 

ultimate load capacity of circular CFSTCSCs. It can be 

obviously noted from Table 1 that 𝐸𝑐 varies between 

17810 𝑀𝑃𝑎~66000 𝑀𝑃𝑎 and for 𝐸𝑠, it varies in the range 

of 177000 𝑀𝑃𝑎 and 213000 𝑀𝑃𝑎. These variations have 

been considered while producing model processes to 

increase the possibility of obtaining a stronger model. 

 

 

Figure 1. Geometrical configuration of CFSTCSC 

3 Relevance vector machine (RVM) 

RVM is a modified version of SVM, employs Bayesian 

concepts, and kernel function [21, 22]. RVM starts with the 

base of linear models, i.e., the function of 𝑦(𝑥) can be 

predicted at any point 𝑥 with a set of measurements of the 

function 𝑡 = (𝑡1, 𝑦, 𝑡𝑁) and with some training points 𝑥 =
(𝑥1, 𝑦, 𝑥𝑁): 

 

𝑡𝑖 = 𝑦(𝑥𝑖) + 𝜀𝑖 (1) 

 

where 𝜀𝑖 = the noise component of the measurement having 

mean 0 and variance 𝜎2. The unknown function 𝑦(𝑥) can be 

expressed as a linear combination of known basis function as 

 


M

i i
i=1

y(x)= w φ (x)  (2) 

 

where,  𝑤𝑖 = (𝑤1, 𝑦, 𝑤𝑀) = a vector consisting of the linear 

combination weights 

 

𝑦(𝑥) = output, a linearly weighted sum of 𝑀 

𝜑𝑖(𝑥) = (𝜑1(𝑥), 𝜑2(𝑥), … … , 𝜑𝑀(𝑀))𝑇 
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For good predictions, most of the parameters are default 

set to zero [21, 22]. 

 

𝑡 = Φ𝑤 + 𝜀 (3) 

 

where, Φ = 𝑁𝑥𝑀 design matrix Φ𝑖(𝑥) at all the training 

points 

 𝜀𝑖 = (𝜀1, … , 𝜀𝑁) = noise vector 

RVM begins with a set of data input {𝑥𝑛}𝑛
𝑁 = 1, and the 

associated vector {𝑡𝑛}𝑛
𝑁 = 1. The prediction is of the form 

similar to SVM as given below: 

 

   


 
N

i i 0
i 1

y x w K x,x w  (4) 

 

where, 𝑤𝑖 = 𝑤1, 𝑤2, … , 𝑤𝑁 = weight vector 

𝐾(𝑥, 𝑥𝑖) = kernel function  

𝑤0 = bias function 

Equation (5) shows the radial basis kernel function is 

employed in this work as follows: 

 

𝐾(𝑥𝑖 , 𝑥) = 𝑒𝑥𝑝 {−
(𝑥𝑖 − 𝑥)𝑇(𝑥𝑖 − 𝑥)

2𝜎2
} (5) 

 

where 𝑥𝑖 and 𝑥 are the training and test patterns, 𝜎 is the 

width of basis function, respectively. For a given input 

dataset, it is assumed as {𝑥𝑛 , 𝑡𝑛}𝑛
𝑁 = 1. It is assumed that 

𝑝(𝑡|x) is Gaussian N (or Normal) (𝑡|y(x), 𝜎2). The mean of 

this distribution for a given 𝑥 can be modeled by 𝑦(𝑥) as 

mentioned in Equation (4). The likelihood of dataset can be 

written as 

 

𝑝(𝑡|w, 𝜎2) = (2𝜋𝜎2)−𝑁 2⁄ 𝑒𝑥𝑝 {−
1

2𝜎2
‖𝑡 − Φ𝑤‖2} (6) 

 

where,   𝑡𝑖 = (𝑡1, … , 𝑡𝑁)𝑇 

 𝑤𝑖 = (𝑤0, … , 𝑤𝑁) 

 
     
     

     



















nn2n1n

n22212

n12111

T

x,xKx,xKx,xK1

x,xKx,xKx,xK1

x,xKx,xKx,xK1

Φ









 
(7) 

 

where 𝐾(𝑥𝑖 , 𝑥𝑛) is the kernel function. The next higher-level 

parameters are useful to constrain an explicit zero-mean 

Gaussian prior probability distribution to the weights. 

 

   




N

1

i i
i 0

p w α N w 0 ,α  (8) 

 

where 𝛼 = a vector of (𝑁 + 1) hyperparameters, useful for 

monitoring the weight deviations [25]. By applying Bayes’ 

rule, the posterior unknowns can be computed as follows: 

 

   



N

i
i 0

p α Gamma α a ,b  (9) 

 

   



N

i 0

p β Gamma β c ,d  (10) 

 

where,  𝛽 = 𝜎−2. Hence, for 𝛼 and 𝜎, the distribution 

followed is gamma; for 𝑤, the normal distribution is 

followed and after the prior-distributions, Bayes’ rule is 

followed.  

 

𝑝(𝑤, 𝛼, 𝜎2|t) =
𝑝(𝑡|w, α, 𝜎2)𝑝(𝑤, 𝛼, 𝜎2)

𝑝(𝑡)
 (11) 

 

The predictive distribution for a new test point (𝑥 ∗) 

corresponding to the target (𝑡 ∗) is determined as 

 

𝑝(𝑡 ∗ |t)

= ∫ 𝑝(𝑡 ∗ |w, α, 𝜎2)𝑝(𝑤, 𝛼, 𝜎2 |t)dw dα d𝜎2 
(12) 

 

By using the decomposition of posterior, the above 

equation can be solved as below in Equation (13): 

 

𝑝(𝑤, 𝛼, 𝜎2|t) = 𝑝(𝑤|t, α, 𝜎2)𝑝(𝛼, 𝜎2|t) (13) 

 

The posterior distribution was analyzed by considering 

the appropriate weights due to the property of normalization 

integral is the convolution of Gaussians [22]. Accordingly, 

Equation (13) can be re-written as 

 

𝑝(𝑤|t, α, 𝜎2) =
𝑝(𝑡|w, 𝜎2)𝑝(𝑤, 𝛼)

𝑝(𝑡|α, 𝜎2)
 (14) 

 

By using the Bayes’ rule, Equation (14) can be modified 

as follows: 

 

𝑝(𝑤|t, α, 𝜎2) = (2𝜋)−(𝑁+1)/2|Σ|−1/2𝑒𝑥𝑝 {−
1

2
(𝑤

− 𝜇)𝑇Σ−1(𝑤 − 𝜇)} 

 

(15) 

The solution for the above equation is given below in 

Equation (16) and Equation (17): 

 

Σ = (𝜎−2Φ𝑇Φ + 𝐴)−1 (16) 

 

μ = 𝜎−2ΣΦ𝑇𝑡 (17) 

 

where, Σ = covariance 

 𝜇 = mean 

 𝐴 = (𝛼0, 𝛼1, … , 𝛼𝑁) 
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Table 1. Experimental data for ultimate axial load capacity of circular CFSTCSCs with the general details 

Source Specimen 
𝐷 

(𝑚𝑚) 

𝑡 

(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

(𝑀𝑃𝑎) 

𝐿 

(𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢 

(𝑘𝑁) 

[30, 31] 
 

SPICIMEN8 120.8 4.06 34.40 27566 452 191536 241.3 1.962 30 2.0 1201 

SPICIMEN9 120.8 4.09 29.58 25562 452 191536 241.4 2.300 30 2.0 1201 

SPICIMEN10 120.8 4.09 25.92 23928 452 191536 241.4 2.625 30 2.0 1112 

SPICIMEN13 152.6 3.18 20.89 21482 415 203395 304.8 1.766 48 2.0 1201 

SPICIMEN14 152.6 3.15 23.10 22589 415 203395 304.8 1.581 48 2.0 1201 

SPICIMEN4 101.7 3.07 31.16 26236 605 207050 203.3 2.575 33 2.0 1068 

SPICIMEN3 101.7 3.07 34.13 27458 605 207050 203.3 2.351 33 2.0 1112 

SPICIMEN3a 169.3 2.62 36.54 28411 317 195811 305 0.563 65 1.8 1307 

[32] 

4HN 150 4.3 28.71 25183 280 209720 450 1.222 35 3.0 1203 

4HN 150 4.3 28.71 25183 280 209720 450 1.222 35 3.0 1225 

4HN 150 4.3 28.71 25183 280 209720 450 1.222 35 3.0 1200 

3HN 150 3.2 28.71 25183 287 190120 450 0.911 47 3.0 1040 

3HN 150 3.2 28.71 25183 287 190120 450 0.911 47 3.0 998 

3HN 150 3.2 28.71 25183 287 190120 450 0.911 47 3.0 980 

2HN 150 2 28.71 25183 336 211680 450 0.65 75 3.0 882 

2HN 150 2 28.71 25183 336 211680 450 0.65 75 3.0 882 

4MN 150 4.3 21.95 22020 280 209720 450 1.599 35 3.0 1065 

4MN 150 4.3 21.95 22020 280 209720 450 1.599 35 3.0 1087 

4MN 150 4.3 21.95 22020 280 209720 450 1.599 35 3.0 1096 

3MN 150 3.2 21.95 22020 287 190120 450 1.191 47 3.0 841 

3MN 150 3.2 21.95 22020 287 190120 450 1.191 47 3.0 840 

3MN 150 3.2 21.95 22020 287 190120 450 1.191 47 3.0 858 

2MN 150 2 21.95 22020 336 211680 450 0.85 75 3.0 773 

2MN 150 2 21.95 22020 336 211680 450 0.85 75 3.0 756 

4LN 150 4.3 18.03 19957 280 209720 450 1.946 35 3.0 963 

3LN 150 3.2 18.03 19957 287 190120 450 1.45 47 3.0 790 

3LN 150 3.2 18.03 19957 287 190120 450 1.45 47 3.0 790 

3LN 150 3.2 18.03 19957 287 190120 450 1.45 47 3.0 747 

2LN 150 2 18.03 19957 336 211680 450 1.035 75 3.0 656 

2LN 150 2 18.03 19957 336 211680 450 1.035 75 3.0 638 

2LN 150 2 18.03 19957 336 211680 450 1.035 75 3.0 672 

[33] 

L-20-1 178 9 22.15 22120 283 200000 360 3.036 20 2.0 2042 

L-20-2 178 9 22.15 22120 283 200000 360 3.036 20 2.0 2102 

H-20-1 178 9 45.37 31658 283 200000 360 1.482 20 2.0 2667 

H-20-2 178 9 45.37 31658 283 200000 360 1.482 20 2.0 2677 

L-32-1 179 5.5 22.15 22120 248 200000 360 1.514 33 2.0 1467 

L-32-2 179 5.5 23.91 22982 248 200000 360 1.403 33 2.0 1530 

H-32-1 179 5.5 43.61 31038 248 200000 360 0.769 33 2.0 2040 

H-32-2 179 5.5 43.61 31038 248 200000 360 0.769 33 2.0 2030 

L-58-1 174 3 23.91 22982 266 200000 360 0.809 58 2.1 1135 

L-58-2 174 3 23.91 22982 266 200000 360 0.809 58 2.1 1135 

H-58-1 174 3 45.67 31762 266 200000 360 0.423 58 2.1 1608 

H-58-2 174 3 45.67 31762 266 200000 360 0.423 58 2.1 1677 
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Table 1. Experimental data for ultimate axial load capacity of circular CFSTCSCs with the general details (continued) 

Source Specimen 
𝐷 

 (𝑚𝑚) 

𝑡  
(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

 (𝑀𝑃𝑎) 

𝐿 

 (𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢  

(𝑘𝑁) 

[34, 35] 

 

R12CF1 190 1.15 110.3 32405 202 193200 662 0.045 165 3.5 2991 

R12CF3 190 1.15 110.3 32405 202 193200 662 0.045 165 3.5 3137 

S10CS50A 190 0.86 41 17810 211 177000 659 0.094 221 3.5 1350 

S12CS50A 190 1.13 41 17810 186 178400 664.5 0.11 168 3.5 1377 

S16CS50B 190 1.52 48.3 21210 306 207400 664.5 0.208 125 3.5 1695 

S20CS50A 190 1.94 41 17810 256 204700 663.5 0.263 98 3.5 1678 

S30CS50B 165 2.82 48.3 21210 363 200600 580.5 0.541 59 3.5 1662 

S10CS80B 190 0.86 74.7 27576 211 177000 663.5 0.052 221 3.5 2451 

S12CS80A 190 1.13 80.2 28445 186 178400 662.5 0.056 168 3.5 2295 

S16CS80A 190 1.52 80.2 28445 306 207400 663.5 0.125 125 3.5 2602 

S20CS80B 190 1.94 74.7 27576 256 204700 663.5 0.144 98 3.5 2592 

S30CS80A 165 2.82 80.2 28445 363 200600 580.5 0.326 59 3.5 2295 

[36] 

 

C1 140.8 3 28.18 25599 285 189475 602 0.92 47 4.3 790 

C2 141.4 6.5 23.81 23528 313 206011 602 2.797 22 4.3 1332 

[37] 

A1-1 125 1 106 48389 232 200000 438 0.072 125 3.5 1275 

A1-2 125 1 106 48389 232 200000 438 0.072 125 3.5 1239 

A2-1 127 2 106 48389 258 200000 445 0.161 64 3.5 1491 

A2-2 127 2 106 48389 258 200000 445 0.161 64 3.5 1339 

A3-1 133 3.5 106 48389 352 200000 465 0.379 38 3.5 1995 

A3-2 133 3.5 106 48389 352 200000 465 0.379 38 3.5 1991 

A4-1 133 4.7 106 48389 352 200000 465 0.524 28 3.5 2273 

A4-2 133 4.7 106 48389 352 200000 465 0.524 28 3.5 2158 

C-1 133 4.7 92 45081 352 200000 465 0.604 28 3.5 1854 

C-2 133 4.7 92 45081 352 200000 465 0.604 28 3.5 1933 

B-3 108 4.5 96 46050 358 200000 378 0.709 24 3.5 1518 

[38] 

C10A-2A-
3 

101.8 3.03 23.2 22638 371 200000 305 2.088 34 3.0 628 

C20A-2A 216.4 6.61 24.3 23169 452 200000 650 2.499 33 3.0 3278 

C30A-2A 318.3 10.36 24.2 23121 335 200000 950 1.995 31 3.0 6319 

C20A-4A 216.4 6.61 46.8 32153 452 200000 650 1.298 33 3.0 4214 

C10A-4A-

1 
101.9 3.03 51.3 33663 371 200000 305 0.943 34 3.0 877 

C30A-4A 318.5 10.36 52.2 33957 334 200000 950 0.921 31 3.0 8289 

[39] 

CU-040 200 5 27.15 24490 266 200000 600 1.058 40 3.0 1951 

CU-070 280 4 31.15 26232 273 200000 840 0.523 70 3.0 3025 

CU-150 300 2 27.23 24526 342 200000 900 0.342 150 3.0 2608 

[3] 
scv2-1 200 3 49.5 37420 304 206500 600 0.386 67 3.0 2383 

scv2-2 200 3 49.5 37420 304 206500 600 0.386 67 3.0 2256 

[40] 

C7 114.9 4.91 28.23 24972 365 200000 300.5 2.53 23 2.6 1020 

C9 115 5.02 48.6 32765 365 200000 300.5 1.506 23 2.6 1378 

C11 114.3 3.75 48.6 32765 343 200000 300 1.026 30 2.6 1033 

C12 114.3 3.85 25.71 23831 343 200000 300 1.997 30 2.6 761 

C4 114.6 3.99 83.6 42974 343 200000 300 0.637 29 2.6 1308 
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Table 1. Experimental data for ultimate axial load capacity of circular CFSTCSCs with the general details (continued) 

Source Specimen 
𝐷 

 (𝑚𝑚) 

𝑡  
(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

 (𝑀𝑃𝑎) 

𝐿 

 (𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢  

(𝑘𝑁) 

[40] 
C8 115 4.92 94.9 45786 365 200000 300 0.753 23 2.6 1787 

C14 114.5 3.84 88.9 44315 343 200000 300 0.575 30 2.6 1359 

[41] 

CC4-A-4-1 149 2.96 40.5 29911 308 200000 447 0.642 50 3.0 1064 

CC8-A-8 108 6.47 77 41242 853 200000 324 3.221 17 3.0 2667 

CC8-C-8 222 6.47 77 41242 843 200000 666 1.397 34 3.0 7304 

CC8-D-8 337 6.47 85.1 43357 823 200000 1011 0.788 52 3.0 13776 

CC4-D-4-1 450 2.96 41.1 30131 279 200000 1350 0.182 152 3.0 6870 

CC4-D-4-2 450 3 41 30131 279 200000 1350 0.182 152 3.0 6985 

[4] 

CA1-1 60 1.87 75.2 41540 282 201500 180 0.515 32 3.0 312 

CA1-2 60 1.87 75.2 41540 282 201500 180 0.515 32 3.0 320 

CA2-1 100 1.87 75.2 41540 282 201500 300 0.297 53 3.0 822 

CA2-2 100 1.87 75.2 41540 282 201500 300 0.297 53 3.0 845 

CA3-1 150 1.87 75.2 41540 282 201500 450 0.194 80 3.0 1701 

CA3-2 150 1.87 75.2 41540 282 201500 450 0.194 80 3.0 1670 

CA4-1 200 1.87 75.2 41540 282 201500 600 0.144 107 3.0 2783 

CA4-2 200 1.87 75.2 41540 282 201500 600 0.144 107 3.0 2824 

CA5-1 250 1.87 75.2 41540 282 201500 750 0.115 134 3.0 3950 

CA5-2 250 1.87 75.2 41540 282 201500 750 0.115 134 3.0 4102 

CB2-1 100 2 75.2 41540 404 207000 300 0.457 50 3.0 930 

CB2-2 100 2 75.2 41540 404 207000 300 0.457 50 3.0 920 

CB3-1 150 2 75.2 41540 404 207000 450 0.298 75 3.0 1870 

CB3-2 150 2 75.2 41540 404 207000 450 0.298 75 3.0 1743 

CB4-1 200 2 75.2 41540 404 207000 600 0.222 100 3.0 3020 

CB4-2 200 2 75.2 41540 404 207000 600 0.222 100 3.0 3011 

CB5-1 250 2 75.2 41540 404 207000 750 0.176 125 3.0 4442 

CB5-2 250 2 75.2 41540 404 207000 750 0.176 125 3.0 4550 

CC2-1 150 2 80 41540 404 207000 450 0.281 75 3.0 1980 

CC2-2 150 2 80 41540 404 207000 450 0.281 75 3.0 1910 

CC3-1 250 2 80 41540 404 207000 750 0.166 125 3.0 4720 

CC3-2 250 2 80 41540 404 207000 750 0.166 125 3.0 4800 

[42] 

D3M4C2 89.32 2.74 33 26999 360 200000 340 1.473 33 3.8 494 

D3M4F13 89.32 2.74 31.48 26370 360 200000 340 1.544 33 3.8 495 

D3M4F22 89.32 2.74 31.48 26370 360 200000 340 1.544 33 3.8 478 

D3M4F33 89.32 2.74 28.19 24954 360 200000 340 1.724 33 3.8 529 

D4M4C1 112.6 2.89 30.84 26101 360 200000 340 1.297 39 3.0 702 

D4M4F13 112.6 2.89 31.48 26370 360 200000 340 1.271 39 3.0 757 

D4M4F21 112.6 2.89 25.28 23631 360 200000 340 1.583 39 3.0 659 

D4M4F32 112.6 2.89 26.2 24057 360 200000 340 1.527 39 3.0 638 

[43] 
SZ3S4A1 165 2.72 48 32563 350 213000 510 0.506 61 3.1 1750 

SZ3S6A1 165 2.73 67.2 38529 350 213000 510 0.363 60 3.1 2080 
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Table 1. Experimental data for ultimate axial load capacity of circular CFSTCSCs with the general details (continued) 

Source Specimen 
𝐷 

 (𝑚𝑚) 

𝑡  
(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

 (𝑀𝑃𝑎) 

𝐿 

 (𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢  

(𝑘𝑁) 

[44] 

C-30-3D 114.3 3.35 32.7 26876 287 206000 342.9 1.128 34 3.0 669 

C-60-3D 114.3 3.35 58.7 36009 287 206000 342.9 0.629 34 3.0 946 

C-80-3D 114.3 3.35 88.8 44290 287 206000 342.9 0.416 34 3.0 1133 

C-100-3D 114.3 3.35 105.5 48275 287 206000 342.9 0.350 34 3.0 1455 

[45] 049C36 30 360 6 31.5 26379 498 202000 1760 1.109 60 4.9 6888 

[46] 

C3 114.3 3.6 173.5 63000 403 213000 250 0.323 32 2.2 2422 

C4 114.3 3.6 173.5 63000 403 213000 250 0.323 32 2.2 2340 

C5 114.3 3.6 184.2 63000 403 213000 250 0.304 32 2.2 2497 

C6 114.3 3.6 184.2 63000 403 213000 250 0.304 32 2.2 2314 

C7 114.3 6.3 173.5 63000 428 209000 250 0.649 18 2.2 2610 

C8 114.3 6.3 173.5 63000 428 209000 250 0.649 18 2.2 2633 

C9 219.1 5 51.6 28000 377 205000 600 0.684 44 2.7 3118 

C10 219.1 5 185.1 66000 377 205000 600 0.199 44 2.7 7813 

C11 219.1 5 193.3 66000 377 205000 600 0.191 44 2.7 8527 

C12 219.1 10 51.6 28000 381 212000 600 1.489 22 2.7 4309 

C13 219.1 10 185 66000 381 212000 600 0.435 22 2.7 9085 

C14 219.1 10 193.3 66000 381 212000 600 0.416 22 2.7 9187 

C15 219.1 6.3 163 66000 300 202000 600 0.231 35 2.7 6915 

C16 219.1 6.3 175.4 59000 300 202000 600 0.215 35 2.7 7407 

C17 219.1 6.3 148.8 52000 300 202000 600 0.254 35 2.7 6838 

C18 219.1 6.3 174.5 52000 300 202000 600 0.216 35 2.7 7569 

[47, 48] 

CF3-1 76.19 2.99 145 56595 278 200000 300 0.341 25 3.9 795 

CF3.3-1 76.18 3.31 145 56595 305 200000 300 0.419 23 3.9 847 

C4NG-1 114.2 4.02 115 50402 306 200000 400 0.418 28 3.5 1428 

C6NG-1 114.3 5.98 115 50402 314 200000 400 0.675 19 3.5 1833 

[49] c0 160 3.83 51 33900 409 200000 480 0.827 42 3.0 2023 

 

Maximization of 𝑝(𝛼, 𝛼𝜖𝑛
2 |y)αp(y|α, 𝛼𝜖𝑛

2 )𝑝(𝛼)𝑝(𝛼𝜖𝑛
2 ) 

concerning 𝛼 and 𝜎2 provide a search for the 

hyperparameters posterior. For the case of uniform 

hyperpriors, maximization is to be performed for the terms 

of 𝑝(𝑦|α, 𝛼𝜖𝑛
2 ), as described below: 

 

p(y|α, 𝛼𝜖𝑛
2 )

= ∫ 𝑝(𝑦|w, 𝛼𝜖𝑛
2 )𝑝(𝑤|α)dw = (2π)−1/2|𝛼𝜖𝑛

2 Ι

+ Φ𝐴−1Φ𝑇|
1/2

x exp {−
1

2
𝑦𝑇(|𝛼𝜖𝑛

2 Ι

+ Φ𝐴−1Φ𝑇|)
−1

𝑦} 

(18) 

 

The predictions can be made based on the posterior 

distribution over the weights, conditioned on the maximized 

most probable values of 𝛼, 𝜎𝜖𝑛
2 , 𝛼𝑀𝑃, and 𝜎𝑀𝑃

2 , respectively.  

 

p(y ∗ |y, 𝛼𝑀𝑃 , 𝜎𝑀𝑃
2 )

= ∫ 𝑝(𝑦 ∗ |w, 𝛼𝑀𝑃
2 )𝑝(𝑤|y, α𝑀𝑃, 𝜎𝑀𝑃

2 )dw 
(19) 

 

Equation (19) can be evaluated as follows: 

 

p(y ∗ |y, 𝛼𝑀𝑃 , 𝜎𝑀𝑃
2 ) = N(y ∗ |t ∗, 𝜎∗

2) (20) 

 

t ∗= μ𝑇Φ(x ∗) (21) 

 

𝜎∗
2 = 𝜎𝑀𝑃

2 + Φ(x ∗)𝑇 ∑ Φ(𝑥 ∗) (22) 

 

The result of the optimization involved in RVM (i.e., max 

of 𝑝(𝑦|α, 𝜎𝜖𝑛
2 )), is that many of 𝛼 tend to infinity such that 

“𝑤” will have only a few nonzero weights that can be 

considered as relevant vectors [50]. 

4 RVM based analysis 

In the present study, the main goal is to develop a model 

by using the concepts of RVM. To train the data and develop 
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a model, MATLAB software was used. The dependent 

parameters, such as 𝑓𝑐, 𝐸𝑐, 𝑓𝑦, 𝐸𝑠, 𝜉, 𝐷/𝑡, and 𝐿/𝐷 are 

considered as the input parameters for developing the RVM 

model. The output from the model is the ultimate load 

capacity of CFSTCSCs, 𝑃𝑢. There are a total of 150 datasets 

for training as well as validation. On closer examination of 

Table 1, the input vector has a significant variation in 

magnitude. Hence, a normalization of the data was done 

before inputting into the algorithm. Equation (23) has been 

used for the linear normalization of the data ranging between 

0 and 1. 

 

𝑥𝑖
𝑛 =

𝑥𝑖
𝑎 − 𝑥𝑖

𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛
 (23) 

 

where 𝑥𝑖
𝑎 and 𝑥𝑖

𝑛 = 𝑖𝑡ℎ component of the input vector before 

and after normalization, 𝑥𝑖
𝑚𝑎𝑥 and 𝑥𝑖

𝑚𝑖𝑛 = the maximum and 

minimum values of all the components of the input vector 

before the normalization, respectively. About 80% of dataset 

was for training the data and about 20% of the dataset is used 

for testing and verification of the RVM model. The most 

important input parameter is the selection of kernel width. 

Further, the training and testing 𝑅 values are dependent on 

the number of relevance vectors (NRV) used in the model 

and their corresponding weights and variation in the kernel 

width. In the present study, the value of kernel width (𝜎) is 

assumed as 0.12. The efficiency of the model has been 

verified with the coefficient of correlation (𝑅), which is 

given below: 

 

  

   


 

 



 



 

n

a pai pi
i 1

n n

a pai pi
i 1 i 1

E E E E

R

E E E E

 (24) 

 

where 𝐸𝑎𝑖  and 𝐸𝑝𝑖 are the actual and predicted values, 𝐸𝑎
̅̅ ̅ and 

𝐸𝑝
̅̅ ̅ are the mean of actual and predicted 𝐸 values 

corresponding to 𝑛 patterns, respectively. Figure 2 presents 

the schematic diagram of the RVM model. Table 2 presents 

the coefficient of correlation, the number of relevance 

vectors used in the development of the model. Table 3 shows 

the weights for the developed RVM model. By using 

Equation (18) and Equation (19) with 𝑤0 as zero, the 

following equation has been deduced to predict 𝑃𝑢 values of 

CFSTCSC members under axial compression loadings. The 

values of weights, 𝑤𝑖 , for all the training datasets are 

available in Table 3. 

 

   


   
   

 
 



T
105

i i

u i
i 1

x x x x
y P w exp

0.034
 (25) 

 

By using Equation (25), the normalized output vector has 

been converted back to original value as 

 

𝑥𝑖
𝑎 = 𝑥𝑖

𝑛(𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛) + 𝑥𝑖
𝑚𝑖𝑛 (26) 

 

where, 𝑥𝑖
𝑛 = normalized result obtained after the test for 

the 𝑖𝑡ℎ component 

 

𝑥𝑖
𝑎 =actual result obtained for 𝑖𝑡ℎ component 

𝑥𝑖
𝑚𝑎𝑥 and 𝑥𝑖

𝑚𝑖𝑛 = maximum and minimum values 

of all the components of the 

corresponding input vector 

before the normalization  

 

The developed model is applicable for the dataset in the 

range of yield strength of steels (𝑓𝑦 = 186~853 𝑀𝑃𝑎), 

concrete compressive strength (𝑓𝑐 = 18~193 𝑀𝑃𝑎), the 

outer diameter of circular sections (𝐷 = 60~450 𝑚𝑚), the 

ratio of the outer diameter to the thickness (𝐷 𝑡 = 17~221⁄ ), 

and the ratio of the height to the outer diameter 

(𝐿 𝐷 = 1.8 − 4.9⁄ ). Table 4 presents the predicted ultimate 

axial load, 𝑃𝑢
𝑅𝑉𝑀, and the corresponding experimental value, 

𝑃𝑢
𝐸 . It can be very clearly seen that the predicted values by 

using the developed RVM model are comparable with each 

other. The maximum % difference between the predicted and 

the corresponding experimental value is about 11. The 

model can be used for the prediction of the ultimate load of 

CFSTCSC members under axial loading within the ranges of 

input data. The predicted values will be useful for the design 

of steel-concrete composite structures. 

5 Conclusions 

The concept of RVM has been employed for developing 

a model to predict the ultimate load of CFSTCSC members 

under axial loading. Large experimental data available in the 

literature on this concept has been collected. The data 

consists of large variations of geometry, mechanical 

properties, and ultimate loads. The influencing variables on 

the ultimate load have been identified after a close 

examination of the collected data. RVM is a machine 

learning methodology that uses Bayesian treatment to obtain 

parsimonious solutions for regression and classification. 

RVM is formulated based on the probabilistic concept and 

weights have been assigned iteratively and also related to a 

set of hyperparameters. RVM model was developed by using 

MATLAB software for training and prediction of the 

ultimate load capacity of CFSTCSCs. About 80% of the 

total datasets were used for training and about 20% of the 

remaining total datasets have been used for verification and 

validation of the developed model. 

It was found that the predicted values are very much 

comparable with that of the corresponding experimental 

values. The predicted ultimate capacity is compared with that 

of the corresponding experimental value and the percentage 

difference between the predicted value and the 

corresponding experimental value is found to be less than 

11%. The ratio of predicted and the corresponding 

experimental ultimate load 𝑃𝑢
𝑅𝑉𝑀/𝑃𝑢

𝐸  was found to vary 

between 0.90 and 1.06, respectively. 
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Figure 2. Schematic diagram for the proposed RVM model of CFSTCSC 

 

 

Table 2. Performance of developed RVM models  

Parameters 
Coefficient of correlation (𝑅) 

Width 
No. of RVs used out of total 

105 dataset 

No. of RVs 

(% of training dataset) Training Testing 

𝑃𝑢 0.996 0.991 0.12 85 80.5% 

 

Table 3. Weights (𝑤𝑖) for RVM models  

𝑖 = 1,2, … ,105 𝑤𝑖 𝑖 = 1,2, … ,105 𝑤𝑖 𝑖 = 1,2, … ,105 𝑤𝑖 𝑖 = 1,2, … ,105 𝑤𝑖 

1 0.0 30 0.0 60 0.0 90 0.1 

2 0.052 31 0.0 61 0.20 91 0.01 

3 0 32 0.01 62 0.0 92 0.02 

4 0 33 0.012 63 0.02 93 0.01 

5 0.06 34 0.06 64 0.01 94 0.0 

6 0.03 35 0.001 65 0.04 95 0.01 

7 0.1 36 0.01 66 0.0 96 0.1 

8 0.12 37 0.03 67 0.0 97 0.21 

9 0.04 38 0.01 68 0.03 98 0.0 

10 0.160 39 0.02 69 0.05 99 0.0 

11 0.11 40 0.3 70 0.23 100 0.03 

12 0.05 41 0.02 71 0.02 101 0.02 

13 0.054 42 0.0 72 0.01 102 0.10 

14 0.05 43 0.0 73 0.10 103 0.0 

15 0.11 44 0.08 74 0.0 104 0.0 

16 0.10 45 0.0 75 0.08 105 0.01 

17 0.212 46 0.001 76 0.01   

18 0.6 47 0.3 77 0.03   

19 0.1 48 0.01 78 0.02   

20 0.01 49 0.02 79 0.01   

21 0.01 50 0.012 80 0.02   

22 0.02 51 0.1 81 0.0   

23 0.03 52 0.6 82 0.3   

24 0.01 53 0.12 83 0.10   

25 0.12 54 0.06 84 0.02   

26 0.1 55 0.04 85 0.01   

27 0.11 56 0.03 86 0.01   

28 0.013 57 0.04 87 0.0   

29 0.03 58 0.0131 88 0.01   

  59 0.013 89 0.03   
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Table 4. Comparison of experimental ultimate axial load values with predicted results obtained from RVM model  

𝑓𝑐  

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 
𝜉 𝐷/𝑡 𝐿/𝐷 

𝑃𝑢 (𝑘𝑁) 
𝑃𝑢

𝑅𝑉𝑀/𝑃𝑢
𝐸 

𝑃𝑢
𝐸(𝑘𝑁) 𝑃𝑢

𝑅𝑉𝑀(𝑘𝑁) 

25.92 452 2.625 30 2.0 1112 1067 0.96 

23.10 415 1.581 48 2.0 1201 1103 0.92 

34.13 605 2.351 33 2.0 1112 1043 0.94 

28.71 287 0.911 47 3.0 1040 1012 0.97 

28.71 287 0.911 47 3.0 998 943 0.94 

21.95 280 1.599 35 3.0 1087 1043 0.96 

21.95 280 1.599 35 3.0 1096 1021 0.93 

21.95 287 1.191 47 3.0 840 862 1.03 

18.03 280 1.946 35 3.0 963 955 0.99 

18.03 287 1.45 47 3.0 790 811 1.03 

18.03 287 1.45 47 3.0 747 722 0.97 

18.03 336 1.035 75 3.0 672 652 0.97 

22.15 283 3.036 20 2.0 2102 2143 1.02 

45.37 283 1.482 20 2.0 2667 2521 0.95 

23.91 248 1.403 33 2.0 1530 1621 1.06 

43.61 248 0.769 33 2.0 2030 2045 1.01 

45.67 266 0.423 58 2.1 1608 1612 1.00 

110.3 202 0.045 165 3.5 2991 2826 0.94 

48.3 306 0.208 125 3.5 1695 1623 0.96 

74.7 211 0.052 221 3.5 2451 2312 0.94 

80.2 186 0.056 168 3.5 2295 2132 0.93 

28.18 285 0.92 47 4.3 790 754 0.95 

23.2 371 2.088 34 3.0 628 612 0.97 

24.3 452 2.499 33 3.0 3278 3387 1.03 

24.2 335 1.995 31 3.0 6319 6561 1.04 

77 843 1.397 34 3.0 7304 7240 0.99 

85.1 823 0.788 52 3.0 13776 14352 1.04 

41.1 279 0.182 152 3.0 6870 6543 0.95 

75.2 282 0.515 32 3.0 320 305 0.95 

75.2 282 0.115 134 3.0 4102 3697 0.90 

80 404 0.166 125 3.0 4800 4654 0.97 

 

Hence the developed model will serve as a robust and 

reliable tool for the design of circular CFSTCSCs. The main 

focus of the present paper was to develop a model to predict 

the ultimate load capacity of CFSTCSCs based on RVM. 

Accordingly, the model was developed and the efficacy of 

the model was verified by the experimental data. The 

proposed model can be used in the modeling approach for 

the estimation of the ultimate load capacity of CFSTCSCs 

based on RVM. 
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