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A B S T R A C T

This study proposes an integrated optimization framework for the techno-economic sizing and performance
evaluation of a grid-connected hybrid renewable energy system (HRES) comprising photovoltaic (PV) panels,
wind turbines (WT), battery storage (BTS), and a diesel generator (DG). A real-world case study is conducted on a
university campus in Turkey using high-resolution hourly meteorological and load data over a full year (8760 h).
The objective is to minimize the annualized cost of the system (ACS), levelized cost of energy (LCOE), and total
net present cost (TNPC), while ensuring high reliability through a constraint on the loss of power supply
probability (LPSP) at 0.5 %. The decision variables include the optimal capacities of PV, WT, DG, BT, and
inverter components, bounded by technical, economic, and operational constraints, including a minimum
renewable energy fraction (REF) requirement. The system’s energy production, storage, and grid interactions are
modeled using detailed mathematical formulations. Optimization is performed using the Moth-Flame Optimi-
zation Algorithm (MFOA) and benchmarked against the Whale Optimization Algorithm (WOA), Flower Polli-
nation Algorithm (FPA), and Genetic Algorithm (GA). Simulation results identify the PV/WT/BT configuration as
the most cost-effective and reliable, achieving an LCOE of $0.1342/kWh, a TNPC of $3.2542 × 10⁶, and an ACS
of $2.9214 × 10⁵. These values reflect a 33 % cost reduction compared to the off-grid configuration. Addi-
tionally, the system enables annual grid electricity purchases of up to 4.4086 × 10⁵ kWh and sales of up to 1.2114
× 10⁶ kWh. Notably, the achieved LCOE is significantly lower than the prevailing commercial grid tariff of
$0.35/kWh in Turkey, demonstrating the financial competitiveness of the proposed system for institutional and
commercial users. In terms of algorithmic performance, MFOA outperforms the other methods by delivering the
fastest convergence, highest optimization stability, and a fully renewable solution (REF = 100 %) without DG
operation. This solution achieves an LCOE of $0.1443/kWh and a TNPC of $3.5085 × 10⁶, which is slightly
higher than the absolute minimum cost but demonstrates the ability to reach 100 % renewable penetration
without diesel usage. The system also reports the shortest execution time (336.5 s), confirming its suitability for
real-time or iterative design tasks. Overall, the proposed HRES configuration offers a technically feasible,
economically advantageous, and environmentally sustainable solution for campus electrification and broader
smart grid applications, and serves as a replicable decision-support model for renewable energy planning in
regions with high electricity tariffs.

* Corresponding author.
E-mail addresses: afatih.guven@yalova.edu.tr (A.F. Güven), onur.ozdal.mengi@giresun.edu.tr (O.Ö. Mengi), thebestbajaj@gmail.com (M. Bajaj), aazar@psu.edu.
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1. Introduction

Over the past few years, the industry’s growth and rising standards of
living have significantly increased the energy demand. In the global
sense, this rise in energy demand has alarmed many nations, and has
unavoidably accelerated the transition to renewable energy resources
(RESs). In this context, energy production and conversion into usable
forms have always been the goals worldwide. The evolution of clean and
sustainable energy resources is currently being pushed by issues such as
the depletion of fossil fuel reserves, hazards of nuclear energy use, and
pollution in the environment [1]. Domestic RESs are crucial for lowering
reliance on foreign energy imports because they are environmentally
friendly and sustainable [2]. In terms of avoiding the generation of
gaseous or liquid waste, the use of RESs has a significant advantage over
conventional energy resources. Viable and environmentally friendly
options for supplying electricity to remote or inaccessible locations
include power systems based on wind and solar energy [3]. Addition-
ally, by integrating battery storage (BTS) or a diesel generator(DG), an
effective power management and distribution strategy can increase the
efficiency of renewable-energy-based power supplies. Photovoltaic (PV)
components are among the most popular renewable energy technologies
owing to ongoing technological advancements and decreases. PV tech-
nology is simple to install and requires little upkeep; however, because
solar radiation is unpredictable and climate-dependent and varies
greatly over the course of a day or an hour, it must be supplemented with
grid connectivity, energy storage, or other energy resources [4]. How-
ever, effectively managing multiple renewable energy sources inte-
grated within hybrid systems remains a critical challenge, necessitating
advanced optimization and control techniques [5].. The energy man-
agement, cost-effectiveness, and environmental effects of these systems
must be investigated in depth. While increasing the reliability of a
PV/wind turbine (WT)/DG systemwith a grid connection has the benefit
of producing revenues by supplying surplus energy to the connected
grid, the economic performance of grid-connected PV, WT, and DG
systems can be significantly impacted by the implementation of recently
developed electricity tariffs. Therefore, extensive research covering all

seasonal variations and different tariff structures is essential to ensure
practical applicability and economic sustainability of these hybrid
systems.
PV, WT, and battery (BT) components must be of the right size when

a grid-connected battery-storage PV/WT system is designed first. The
use of intelligent optimization techniques established upon a robust
rule-based scheme for energy management that coordinates the power
flow is necessary to achieve an ideal system component sizing
arrangement to cover the load demand. This process can provide
maximum reliability while minimizing costs. Here, an optimization
problem that considers the sizing of PV, WT, DG, and BT components as
well as specific technical and financial constraints should be considered.
A thorough evaluation of PV/WT/DG/BT system optimization in

both off-grid and grid-connected systems was conducted in this study.
Table 1 demonstrates that despite exhaustive research in this field, there
is still a gap in the literature in terms of the comparisons of grid-
connected and off-grid operations when factors such as component
cost caps, tariff structures, Renewable Energy Fraction (REF), and
desired operating reliability are considered.
The novelty of this research lies in the following three aspects:

• Developing an integrated multi-objective optimization framework
that simultaneously addressing techno-economic, reliability, and
environmental constraints under detailed hourly meteorological and
demand data (8760 h).

• Systematically benchmarking multiple advanced metaheuristic al-
gorithms under identical conditions, providing comprehensive
comparative insights.

• Incorporating real-world dynamic electricity tariff structures from
Turkey, along with rigorous sensitivity analyses on interest rates,
LPSP, and converter efficiency.

Despite the extensive body of research on HRES, a clear gap remains
in the unified optimization of grid-connected configurations that ac-
count simultaneously for techno-economic performance, operational
reliability, and renewable energy integration constraints. Prior studies

Nomenclature

Acronyms
ACS Annual cost of the system
BT Battery
CRF Capital recovery factor
Cgrid Cost of purchasing power from grid
DG Diesel generator
DOD Depth of discharge
FPA Flower Pollination Algorithm
GA Genetic Algorithm
HOMER Hybrid optimization model for electric renewables
HRES Hybrid Renewable Energy System
LCOE Levelized cost of energy
LPSP Loss of power supply probability
MFOA Moth-Flame Optimization Algorithm
OFS Objective function of the system
PV Photovoltaic panel
REF Renewable energy fraction
RE Renewable energy
RESs Renewable energy resources
Rgrid Revenue from selling energy to grid
TGE Total gas emission
TNPC Total net present cost
WOA Whale Optimization Algorithm
WT Wind Turbine

Symbols
PWT(t) The power output of the wind turbine generator
PPV(t) Power generation by photovoltaic panel
PL(t) Load energy demand at time t
ƞInv Inverter efficiency
ƞ bat Battery efficiency
Pch (t) Power available for battery charging
Ech(t) Energy loaded into the battery
Pdistch(t) Power to be discharged from battery
Edistch(t) Energy discharged from the battery
Ebmin Energy stored in the battery (minimum)
Ebmax Energy stored in the battery (maximum)
Eb(t) Energy stored in the battery at time t
Edump(t) Dump Energy
DG hr(t) Diesel generator is operational at the specified time
DG P Energy output from the diesel generator
SOCmin Lowest battery charge level
SOCmax Highest permissible battery charge level
O&M Operation and maintenance cost
Egrid p(t) Energy purchased from grid at time t
Egrid s(t) Energy sold to grid at time t
Eserved Primary load served (kWh/year).
KT Temperature coefficient of the maximum power for mono

and polycrystalline silicon.
t Time
h Hours

A.F. Güven et al.
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Table 1
Review of the literature on current research on HRES systems with various parameters.

System type Energy
resources

Energy storage Findings Country Ref.

Grid-connected PV/WT BT To enhance the COE efficiency, a multi-objective design framework was developed for
both independent and grid-connected hybrid PV/WT/BT systems. The optimal
configuration of the system was established utilizing the artificial electric field
algorithm (AEFA) and subsequently validated through a comparative analysis with
PSO and gray wolf optimization (GWO).

Iran [10]

Grid-connected PV/WT/FC H2 A comparative analysis has recently been conducted aiming to achieve cost-effective
energy production. This analysis includes a modified seagull optimization technique,
the original seagull optimization algorithm (SOA), and a customized version of the
farmland fertility algorithm (MFFA). Furthermore, the excess generated energy is
integrated into the primary electricity distribution grid, and the system maintains its
commitment to zero emissions by harnessing clean energy sources.

China [11]

Stand-Alone PV/WT/FC H2 Systemminimization was carried out using amodified version of a novel metaheuristic
algorithm known as Improved African vulture optimization (IAVO). Better
minimization with higher consistency was achieved for total net present cost (TNPC)
using this algorithm.

Iran [12]

Stand-Alone PW/WT/DG BT For optimizing the HRES, its COE and loss of power supply probability (LPSP) were
considered. Techniques like Salp Swarm Algorithm (SSA), grey wolf optimizer (GWO),
and improved grey wolf optimizer (IGWO) were implemented, and IGWO showed
superior performance.

Saudi Arabia [13]

Grid -connected PV BT The desired minimum emission and cost of energy (COE) were determined using the
HOMER software.

Saudi Arabia [14]

Grid-connected PV BT A new sizing methodology was presented for PV systems on a grid, each employing
diverse battery technologies. In a techno-economic comparison across five battery
types, the PV system integrated with a nickel-iron battery outperformed the rest in
conditions with high main fault frequencies.

Egypt [15]

Stand-alone PV/WT/FC/
DG

BT, H2 Using HOMER software, the energy production of Koh Samui, a well-known island that
caters to tourists and is located in the Gulf of Thailand, was examined in the context of
energy independence and renewable energy-based electricity generation.

Thailand [16]

Grid-connected
/Stand-alone

PV/BG/
BMG

BT The study contrasted stand-alone with grid-connected configurations. Leveraging the
Aquila optimization technique, the grid-connected system outperformed HS and PSO,
boasting the least net present cost (NPC) and reduced energy cost.

India [17]

Grid-connected PV – The ideal PV system size for meeting the load requirements of a public building and the
electric vehicles used by its occupants is presented. While both single and multiple
optimization processes were carried out, the carbon footprint, amount of grid power
purchased, and COE decreased.

France [18]

Grid-connected PV/WT – Optimized using hybrid methods combining PSO, GA, GWO, ABC, and Marquardt
Gradient Descent (MGD), achieving an annual energy production above 5000 kWh and
minimum LCOE of 0.0662 $/kWh, with an optimal REF ≥80 %.

Morocco [19]

Grid-connected PV/WT BT Systematic literature review identifying critical gaps in optimization strategies, energy
storage integration, and economic feasibility analyses. Emphasized need for advanced
methodologies to ensure reliable integration of HRES into national power grids.

Brazil [20]

Grid-connected PV/WT BT Probabilistic model using Monte Carlo simulations and dynamic parameter Bald Eagle
Search (DP-BES) algorithm, achieving maximum cost reduction (41 %) compared to
standalone PV (33 %) or wind systems (25 %). Reliability ensured via LPSP.

Iran [21]

Stand-alone PV/WT BT Proposed a novel Caracal Optimization Algorithm (CAO) demonstrating superior
performance compared to GWO, Whale Optimization Algorithm (WOA), zebra
optimization algorithm (ZOA), and PSO. Achieved the lowest LCOE (0.1069 $/kWh),
lowest net present cost (NPC), and superior solution convergence for off-grid PV/
wind/battery systems.

Cameroon [22]

Grid-connected PV/WT/DG BT Comparative techno-economic analysis of incentive-based demand response policies
using Circle Search Algorithm (CSA). Reduced generation cost from $25,463 to
$24,969 (IBDR1) and $24,899 (IBDR2), with significant customer and DISCOM
benefits.

India, South Africa [23]

Grid-connected PV – Developed a solar power plant electricity supply chain model optimized using Particle
Swarm Optimization (PSO) algorithm under uncertainties (electricity demand, solar
radiation). Determined optimal PV plant capacities to minimize conventional gas
power plant consumption and emissions.

Iran [24]

Grid-connected PV – Implemented forecasting frameworks (ARIMA model) to enhance Virtual Power Plant
(VPP) performance. Achieved high prediction accuracy for PV generation (MAE:1.219,
R²:0.899 in summer), facilitating optimized energy scheduling, demand response, and
integration of renewables.

North Macedonia [25]

Stand-alone PV/WT BT Optimized off-grid PV/WT/BT system sizing using Black-Winged Kite Algorithm
(BKA). Achieved the lowest total annual cost (TAC: $7105.23) and LCOE of $0.1874/
kWh, demonstrating superior results compared to HHO, SCA, WSO, and AOA
algorithms, while ensuring LPSP ≤5 %.

India (Puri, Odisha) [26]

Grid-connected PV – Techno-economic analysis conducted for optimal tilt-angle configurations in PV
systems across diverse climates in Iran. Optimal annual tilt angle achieved superior
economic performance with payback periods ranging from 3 to 6 years and enhanced
CO₂ reduction capabilities.

Iran [27]

Grid-connected/
Stand-alone

PV/WT/
BG/DG

BT, Hydrogen,
Pumped Hydro

Comprehensive review covering techno-economic and environmental assessments of
ESS-integrated hybrid renewable energy systems (HRES). Analyzed various ESS types
and optimization techniques, highlighting significant research gaps in cost-effective
sizing, operational management, and hybrid ESS integration.

Bangladesh,
Malaysia, Australia

[28]

(continued on next page)
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have largely focused either on off-grid scenarios, simplified grid in-
teractions, or limited comparative analysis of optimization methods.
Moreover, most existing works overlook the dynamic interplay between
grid purchase/sale tariffs, energy storage behavior, and sizing strategies
under varying reliability thresholds. Although several metaheuristic
algorithms have been employed individually in HRES design, a rigorous
comparative evaluation of their effectiveness under identical conditions
is seldom addressed. Therefore, the problem to be addressed in this
study involves the development of an integrated multi-objective opti-
mization framework that accurately models real-world meteorological
and demand conditions, incorporates component and grid constraints,
and systematically benchmarks multiple advanced metaheuristic algo-
rithms to identify the most cost-effective and reliable system configu-
ration for grid-connected HRES applications.
Despite substantial contributions by previous studies, several critical

aspects still require further investigation. Particularly, most existing
studies either neglect dynamic tariff structures, lack detailed sensitivity
analyses, or do not sufficiently address the interplay between economic
parameters and REF. Additionally, conventional and metaheuristic
optimization methods have limitations in terms of convergence,
computational time, or getting stuck in local optima [31–36].
Researchers in the cited literature have reported conventional and

meta-heuristic optimization techniques as software tools for analyzing
performance. Software tools have considerable drawbacks and take
longer to compute than current optimization methods. To circumvent
the issue that conventional techniques are frequently stuck at local
minima, researchers have combined conventional and evolutionary

algorithms to determine the optimal sizes in hybrid systems [31–36].
Several relevant studies have attempted to address these gaps with

varying approaches: Maleki et al. [6] investigated how grid purchase
and sale tariffs affected a hybrid energy system made up of
grid-connected PV, wind, and fuel cell components. It has been
demonstrated that this is a better option than grid prices. Seasonal an-
alyses could not be performed because their results were based on daily
load data, considering the minimum daily operating and maintenance
costs. Samy et al. [7] used grid-connected HRES including the compo-
nents of WT, PV, and FC to cover the electricity load requirements of a
resort for tourists in Hurghada, Egypt. They evaluated the cost of buying
electrical energy and the revenue from selling it to the grid. Particle
swarm optimization (PSO), hybrid firefly optimization, and harmony
search optimization techniques were used to reduce the net present cost
of the proposed system. The results additionally demonstrated that the
system collected 4 GW from the grid and sold 3 GW to the grid. Recently,
Güven et al. [8] used HOMER, Ant Colony Optimizer, and Jaya algo-
rithms for optimal sizing of an off-grid PV/WT/DG/BT energy system.
Despite obtaining 1.8431 × 10⁶ kWh of excess energy, grid sales were
not deemed appropriate. Güven and Samy [9] used Hybrid Firefly Ge-
netic Algorithm (HFGA), Genetic Algorithm, Cuckoo Search Algorithm,
and Sine-Cosine Algorithm for a techno-economic evaluation of off-grid
WT, PV, biomass gasifier (BG), and fuel cell (FC) systems including
hydrogen storage. The system produced 8.0280 × 10⁵ kWh excess en-
ergy, without considering grid sale opportunities.
In line with these identified limitations, the following objectives are

formulated to guide the scope of this study:

Table 1 (continued )

System type Energy
resources

Energy storage Findings Country Ref.

Grid-connected PV – Developed novel hybrid machine learning approaches (series and parallel models
combining Artificial Neural Networks and Boosting Trees) for predicting greenhouse
energy consumption and PV energy production. Models demonstrated effective
performance (10 %< nRMSE< 30 %), especially under dynamic external temperature
and solar radiation conditions.

Morocco [29]

Grid-connected PV/WT BT Introduced Transactive Energy Management (TEM) using the Slime Mould Algorithm
(SMA) for efficient scheduling and storage optimization in renewable energy-based
microgrids. Achieved 20–48 % cost savings through optimal BT charge/discharge
cycles and reduced emissions by 25–38 %, significantly outperforming traditional
optimization methods.

South Africa [30]

Fig. 1. Grid-connected PV/WT/DG/ BT model proposed by the researchers for the research area.

A.F. Güven et al.
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• Identifying optimal configurations and sizing parameters for a grid-
connected HRES including PV, WT, DG, and BT.

• Performing a comprehensive techno-economic-environmental
assessment using real-world hourly load and meteorological data.

• Evaluating the reliability and sensitivity of proposed systems to
varying parameters including LPSP, economic factors, and converter
efficiency.

The main goal of this study is to identify the ideal parameters for a
grid-connected HRES, taking into account both financial and

Fig. 2. The weather patterns of the study area. (a) solar radiation
(
W/m2

)
, (b) wind speed (m/s), (c) ambient air temperature ( ◦C).

A.F. Güven et al.
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environmental considerations, and to compare the results of the opti-
mization process using metaheuristic algorithms. In this study, the lev-
elized cost of energy (LCOE), TNPC, and annual cost of the system (ACS)
were identified as objective functions of the proposed HRES. Real-world
weather data and load demand values of 8760 h were used for optimi-
zation (one year). Examining the effect of the system component reli-
ability on the proposed design is another goal of this study. However,
optimal system configuration still poses a challenge due to varying site-
specific conditions, component interactions, and dynamic market
structures.. New technologies and approaches are required to reduce or
eliminate the current emission rates. Global warming can be reduced in
the future with HRESs produced using RES components.
The objectives for the techno-economic-environmental analysis of

the HRES, based on the intended contribution to the literature, are
outlined as follows:

• The proposed microgrid sizing method is based on a grid-connected
PV/WT/DG/BT configuration that simulates real-world microgrid
behavior. When RESs produce more energy than needed, the excess
is fed into the grid.A meta-heuristic algorithm grounded in set rules
was implemented to devise an energy-control approach for the
microgrid, drawing insights from the simulation model depicted in
Fig. 1. This specific EMS manages the flow and distribution hierar-
chies among the diverse microgrid elements.

• Modeling systems and energy management techniques yield diverse
results. A primary phase of this research involves utilizing mathe-
matical equations in a MATLAB environment for system manage-
ment. Consequently, varying input data such as weather conditions,
energy consumption, and types of system components can be easily
modified.

• The algorithms proposed in this study to determine the minimum
ACS, optimal HRES sizes, and other energy parameters demonstrate
the ability of this study to address this issue.

• Energy production and numerous related cost calculations were
subjected to a sensitivity analysis of changes in LPSP values, interest
rates, and converter efficiency.

• The analyses in this study will aid researchers in selecting the best
technique for their specific HRES design optimization problems. The
remainder of this paper is organized as follows.

Research Questions
In light of the identified research gap, this study is guided by the

following research questions:

• RQ1: What is the optimal sizing configuration of a grid-connected
PV/WT/DG/BT hybrid renewable energy system under real-world
meteorological and load conditions?

• RQ2: How do different metaheuristic algorithms compare in terms of
cost minimization, reliability enhancement, and energy performance
when applied to identical hybrid system configurations?

• RQ3: What are the techno-economic and environmental impacts of
dynamic grid tariff structures, interest rate variations, and energy
storage parameters on system behavior?

The remainder of this paper is structured into five sections: Section 2
presents the modeling of the hybrid energy generation system and its
renewable components. Section 3 describes the methodology, system
configuration, load profile characteristics, and optimization strategies.
Section 4 presents the simulation results and discussions. Finally, Sec-
tion 5 concludes the paper and offers directions for future research.

2. Mathematical representation of hybrid renewable energy
system

Fig. 1 presents a schematic overview of the HRES, encompassing the
load associated with the university’s main campus, connections to the
grid, and elements such as PV, WT, DG, and BT. In situations where the
PV yield falls short, the BT utilizes surplus energy to fulfill the demand.
To avoid overcharging and overdischarging of the BT, a charge
controller was employed. In this section, the mathematical representa-
tions of the system’s components, definitions of the objective functions,
and explanations of the system’s energy management scheme are pre-
sented. The COE produced by the system was determined based on the
lifespan of the project and all its components, using the discounted cash
flow analysis method. The lifetimes of the WT, BT, and PV components
were assumed to be 15, 20, and 25 years, respectively. The projected
lifespan of the system is assumed to be 20 years. To ensure that the
calculations were accurate, interest rates (Ir) were considered as a
financial criterion were taken into consideration. The proposed grid-
connected PV, WT, DG, and BT systems are shown in Fig. 1.

2.1. Meteorological and electrical load data

The proposed Hybrid Renewable Energy System (HRES) was

Fig. 3. Annual load profile for the campus.

A.F. Güven et al.
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modeled for implementation at a university campus in Turkey,
geographically located at 40◦39.2′N latitude and 29◦13.2′E longitude.
Meteorological data were acquired from the Turkish State Meteorolog-
ical Service and included hourly records of solar irradiance, wind speed,
and ambient air temperature. The hourly electrical load profile was
obtained from the university’s Energy Management Unit, which
continuously records real-time consumption data using a centralized
monitoring system. All load measurements used in the study were
directly measured and extracted from the institution’s internal data
infrastructure. These data, along with the hourly electrical load profile,
were utilized to construct a comprehensive annual energy and envi-
ronmental profile for the study site. Fig. 2 illustrates the temporal dis-
tribution of key meteorological parameters—namely, wind speed
measured at 10 m above ground level, ambient temperature, and solar
radiation—recorded hourly over a one-year period (8760 h). The
average daily electricity demand on the campus was calculated to be
approximately 6947.06 kWh. The observed maximum and minimum
hourly load values during the year were 938.50 kW and 289.46 kW,
respectively. The corresponding hourly load demand profile for the case
study is presented in Fig. 3. All input data were stored in a modular
structure within the MATLAB simulation environment. This configura-
tion allows the proposed framework to be readily adapted for other
geographical locations by simply updating the input datasets with new
hourly meteorological and load data. Thus, the model can be flexibly
applied to different regions for site-specific HRES planning.

2.2. PV component modeling

To accurately model the performance of a PV component, it is
essential to consider its peak power output behavior. The ability of the
PV module to produce high-quality power can be influenced by a
number of factors. Some of these factors include the amount of solar
radiation that reaches the surface, fixed solar panel orientation, prop-
erties of the PV modules, and ambient air temperature at the specified
time. Eq. (1), a streamlined model that accounts for the solar radiation
and ambient air temperature values, was employed in this study to
calculate the output power of the PV generator over the course of a year
[37].

Ppvout (t) = P(PVrated)×
G(t)

Gt− STC
× [1+ αt(TC(t) − TC− STC (1)

Here, Ppvout (t) is the PV module’s output power (W), G(t) is the solar
radiation value (W/m2), P(PVrated) is the rated power value in standard test
conditions (STC) for PV (W), Gt− STC is the solar radiation value in STC
(Gt− STC = 1000 W/m2), αt is the temperature defined by − 3.7 × 10–3(1/
◦C), TC− STC is the cell temperature in STC (TC− STC = 25 ◦C), and Tamb is
the ambient air temperature ( ◦C). The cell temperature TC(t) was
calculated using Eq. (2) [38].

TC(t) = Tamb(t) + [0.0256 x Gt(t)] (2)

2.3. WT component modeling

Wind is one of the most valuable and promising resources for a HRES
when properly modeled and managed. Hub height, surface topography,
and turbine speed characteristics affect the wind output differently.
These elements influence the energy production of theWT generator at a
given site. The power output from the wind was significantly influenced
by the height of the turbine above the reference ground. The height
adjustment equation can be used to adjust the appropriate height during
the assembly. Eq. (3) can be used to determine the power output of the
WT [39]:

PWT =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

Pr
v(t) − vcut− in
vr − vcut− out

Pr

v(t) ≤ vcut− in
vcut− in < vr

vr < v(t) < vcut− out
(3)

Pr is theWT nominal power (kW), v(t) is the wind speed (m/s), vcut− out
is the low shear speed of WT (m/s), vr is the WT nominal speed (m/s),
and vcut− in is the high shear speed of WT (m/s).
In Eq. (4), the wind speed based on the reference altitude and the

influence of the power law constant are the factors that determine the
wind speed at a consistent altitude.

Vt = Vm∗

(
Ht

Hm

)ah
(4)

In Eq. (4), Hm is theWT reference height (m),Ht is theWT hub height
(m), Vm is the wind speed at the WT hub height (m/s), Vt is the speed at
the reference height (m/s), and ah is the exponential power law value,
typically taken as 1/7.

2.4. BT component modeling

Because the outputs of PV cells and WTs are naturally stochastic,
modeling the BT component is crucial for ensuring that the load demand
is met. The current state of charge (SOC) is the primary deciding factor
for managing BT overcharge and overdischarge. When the hybrid sys-
tem generates a surplus of power or when the load demand is low, the BT
can be overcharged. The control system steps in and stops charging
when BT reaches the maximum value of EBT max. Here, the control sys-
tem reduces the load when the EBT min value is reached to prevent the
shortening of the BT life. The output power and energy demand deter-
mine the BT state at any given moment. By balancing the load demand
and supply, the BT plays a significant role in the energy management
process of the system. BT is entirely reliant on its previous SOC at any
given hour. In this case, t (t − 1) hours are used to express the energy
production, consumption, and changes in the BT’s SOC. When other
resources, such as WT, DG, and PV, generate more energy than is needed
by the load, surplus energy must be used to charge batteries and store it
in BT banks. Eq. (5) can be used to express the current capacity of the BT
bank at time h [40].

EBT(t) = EBT(t − 1)(1 − σ) +
[

EWT(t)+EPV(t) −
ELoad(t)

ηInv

]

ηBC, Charge (5)

Energy is supplied by the BT and released in the process in the
opposite scenario, that is, when the total power generated by the other
resources is not sufficient to meet the load demand. Accordingly, Eq. (6)
can be used to express the usable capacity of the BT component at hour t
during the discharge process.

EBT(t) = EBT(t − 1)(1 − σ) +
[
ELoad(t)

ηInv
− (EWT(t)+EPV(t))

]

ηBD,Discharge

(6)

EBT(t) represents the BT’s available capacity at hour t (kWh),
EBT(t − 1) represents the BT’s available capacity at an hour (t-1) (kWh),
ELoad stands for the load demand at hour t (kWh), EWT represents the
energy production of the WT at hour t (kWh), σ represents the BT’s rate
of self-discharge, EPV represents the energy production of the PV-module
at hour t (kWh), ηBC represents the efficiency of BT charging, ηBD rep-
resents efficiency of BT discharging, and ηInv represents the efficiency of
the inverter. The BT charging efficiency values, denoted by ηBC and ηBD
in Eqs. (5) and (6),respectively, varied depending on the charging cur-
rent at different stages. A BT must exhibit different charging and dis-
charging efficiencies. In this study, it was assumed that the charging
efficiency would always be 90 %.
Batteries are used to store the surplus energy generated by renewable

resources. However, BT size is a limiting factor. A large amount of en-
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ergy cannot be stored in any BT. Excess power must be discharged if the
BT is fully charged. The capacity of BT is referred to as the depth of
discharge (DOD). Because of their chemical composition, most batteries
must be charged, and if a BT is constantly used at 100 % charge, its
lifespan will be shortened. The BT capacity increases with an increase in
the DOD value. The SOC and DOD had a negative relationship. The
maximum permitted DOD value is presented as a percentage. In this
study, this value was assumed to be 80 %. Eq. (7) was used to calculate
the minimum BT capacity [41]:

EBT min = (1 − DOD)EBT max (7)

Here, the DOD maximum permissible depth of BT discharge ( %),
EBatt max and EBatt min are the maximum and minimum capacities of the
BT, respectively.
One of the most crucial components of optimization calculations is

the BT capacity, which determines the rate at which BT will be charged.
When the desired time in hours is multiplied by the current used to
discharge the BT, the result is the BT’s capacity, which is measured in
ampere-hours (Ah) [42]. As measured in kilowatt-hours (KWh), the
capacity is the amount of electricity that can be stored in the BT (kWh).
The BT power determines the amount of electricity it can produce and is
measured in (kW). Therefore, high-power and low-capacity BT can be
powered by other components of the system more quickly than
high-capacity and low-power BT [43]. Eq. (8) expresses the BT capacity
constraint for any given time.
The ratio of the energy output to the energy input for a BT is known

as round-trip efficiency. The round-trip efficiency is 9 kWh/10 kWh or
90 % if the BT input is 10 kWh and its output is 9 kWh. Therefore, for
cost-effective selection of the BT component, its round-trip efficiency
must be high [44].

EBT min ≤ EBT(t) ≤ EBT max (8)

2.5. DG component modeling

In the HRES proposed in this study, DG was used to compensate for
insufficiencies in the power generated by the BT and RESs. While a DG’s
maintenance costs are influenced by the amount of time its engine is
running and the load it supports, its operating costs are related to fuel
consumption. Although the typical DG fuel consumption characteristic
curve is quadratic in nature, a linear function is used as a simplified
model in Eq. (9) [45].

q(t) = adgPDG(t) + bdgPr (9)

where, PDG(t) represents the power output of DG at hour t (kW), q(t)
represents the consumption of fuel (L/h), Pr represents the average DG
power, and adg and bdg (L/kW) are constants that represent the param-
eters of standard fuel consumption, which were 0.246 and 0.08415,
respectively.

2.6. Inverter

A converter, which is an electronic device, can operate in two ways.
A converter that converts direct current (DC) to alternating current (AC)
is called an inverter. When it converted to DC, it is called a rectifier [46].
A converter can also be bidirectional [47]. Owing to its capacity to serve
as both an inverter and rectifier simultaneously, a bidirectional con-
verter is a crucial component and is employed in hybrid systems. By
converting the energy generated by the PV panels and the energy stored
in the BT, both of which are connected to the DC busbar, into an AC,
power is supplied to the electrical load. In this instance, it functions as an
inverter. Additionally, when it converts the energy generated by the DG
and WT components, both of which are connected to the AC busbar, it
functions as a rectifier to charge the BT [48].
The input power Pinv of the inverter is calculated in this study using

Eq. (10), where the size of the inverter is determined based on the
maximum load demand [49].

Pinv(t) = PL(t)/ηinv (10)

Here, PL(t) and ηinv represent load power and inverter efficiency,
respectively.

2.7. Grid modeling

The electrical grid functions as an integrated infrastructure that
connects various energy sources, facilitating the generation, distribu-
tion, and temporary storage of electricity. Within the proposed system
architecture, energy can be imported from the grid to supplement the
load demand when the energy output from PV, WT, and B units is
insufficient. Additionally, the DG operates as a standby unit to ensure
supply continuity under critical shortages.
The revenue generated from exporting excess energy to the grid is

calculated using Eq. (11) [50]:

Rgrid =
∑8760

t=1
rfeed in.Egrid s(t) (11)

where rfeed in denotes the feed-in tariff rate, specified in this study as
$0.01/kWh based on actual market values. Conversely, the cost associ-
ated with grid power procurement is computed using Eq. (12):

Table 2
Technical and economic characteristics of HRES components.

Components Parameters Value Unit

A. Solar Panel Capacity of solar panel 0.345 kW
Temperature coefficient of solar
panel

− 0.390 ​

Productivity 17.8 %
Operating temperature 44 ◦C
lifespan of solar panel 20 Years
Replacement cost of solar panel 650 $/kW
O&M cost of solar panel 50 $/Year
Capital cost 650 $/kW

B. Wind Turbine Rated power of turbine 1 kW
Hub height of turbine 17 m
O&M cost of wind turbine 200 $/Year
Replacement cost of wind turbine 2000 $/kW
Cost of capital 2000 $/kW
Lifespan of wind turbine generator 20 Year

C. Battery Rated voltage of battery 600 V
Rated capacity of battery 100 kWh
Maximum capacity of battery 167 Ah
Round-trip efficiency of battery 90 %
Maximum battery charging current 167 A
Minimum battery charge status 20 %
Maximum battery discharge current 500 A
Lifespan of battery bank 10 Year
Replacement cost of battery 550.00 $/kW
Capital cost of battery 550.00 $/kW

D. Diesel Generator Capacity of diesel generator 1000 kW
Capital cost of diesel generator 175 $/kW
O&M cost of diesel generator 30 $/kWh
Replacement cost of diesel
generator

175 $/kW

Fuel price of diesel generator 1 $/L
Lifespan of diesel generator 10 Year

E. Inverter Capacity of inverter 1 kW
Replacement cost of inverter 300 $/kW
Capital cost of inverter 300 $/kW
O&M cost of inverter 50 $/Year
Productivity of inverter 95 %
Lifespan of inverter 15 Year

F. Economic
Parameters

Interest rate dynamics in Turkey 19 %
Inflationary trends in Turkey 16.59 %
Discount rate benchmarks in
Turkey

8 %

Operational duration of HRES 20 Year
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Cgrid = Cp
∑8760

t=1
Egrid p(t) (12)

Here, Cp represents the cost of purchasing 1 kWh of electricity from
the grid, estimated at $0.25/kWh for the case study location. This value
was obtained from the University’s Department of Construction Works
to reflect realistic pricing data. Furthermore, grid availability (GA) is an
essential metric for evaluating the reliability of grid connectivity and is
defined in Eq. (13) as:

GA(%) =
Grid uptime
Grid downtime

x100 (13)

This parameter provides insight into the operational dependability of
the grid throughout the simulation horizon.

2.8. Economic parameters

Accurate economic assessment is essential for evaluating the finan-
cial feasibility and long-term sustainability of hybrid energy systems. In
this study, key economic indicators were established, including a real
interest rate of 19%, an inflation rate of 17%, and a discount rate of 8 %.
The projected operational lifespan of the proposed HRES configuration
was assumed to be 20 years, aligning with typical engineering and
financial planning horizons.
To ensure realistic modeling, cost estimates for individual system

components were obtained directly from equipment manufacturers and
integrated into the simulation framework. These values form the foun-
dation of the economic analysis, enabling the computation of lifecycle
costs and investment viability. The technical and financial specifications
associated with each microgrid component are summarized in Table 2.

2.9. LPSP-based power reliability constraint

The dependability of the microgrid system was assessed according to
the LPSP. Owing to the existence of numerous factors, including inter-
mittent solar radiation characteristics, wind speed, and grid downtime,
which affect the reliability of the proposed system and its capacity to
fully meet the required load at all times, analyzing energy reliability is a
crucial step in the system design process. Energy reliability is a param-
eter that indicates the likelihood that in the event of an insufficient
power supply, the hybrid model will be unable to meet the load
requirement [51]. LPSP was calculated using Eq. (14).

LPSP =

∑8760
t=1 Pdeficit(t)

∑8760
t=1 Pdemand(t)

(14)

Here, Pdeficit(t) is the power deficit at time t and Pdemand(t) is the
power consumed at time t. The value interval of LPSP is [0,1] [52].

2.10. Renewable fraction (REF)

Several performance indicators have been utilized to evaluate the
contribution of RE sources in hybrid power systems. Among these, the
REF is a widely adoptedmetric aimed at quantifying andmaximizing the
share of renewables, thereby reducing dependence on non-renewable
energy sources such as diesel generators. For diesel-based HRES con-
figurations, the REF value is calculated using Eq. (15) [53]:

REF(%) =

(

1 −
∑8760

t=1 PDG(t)
∑8760

t=1 PPV(t) + PWT(t)

)

100 (15)

In this expression, PDG(t), PPV(t), and PWT(t) represent the power
outputs of the DG, PV system, and WT at time step ttt, respectively. To
enhance the renewable penetration within the system, the denominator
of the equation should be maximized while minimizing DG usage.
The REF serves as an optimization objective and is bounded above by

100 %. In practical optimization scenarios, it is treated as a constraint to

ensure that the renewable contribution meets or exceeds a predefined
target εREF, as expressed in Eq. (16) [54]:

REF(%) ≤ εREF (16)

This constraint guides the algorithm toward solutions that favor
higher shares of renewable energy without violating system reliability or
operational constraints.

2.11. Design variables

In this study, the design variables—also referred to as decision var-
iables—comprised the rated capacities of WT, PV, BT, and DG. The
operational limits of these variables, in terms of their lower and upper
bounds, are defined in Eq. (17):

Decision Variables =

⎧
⎪⎪⎨

⎪⎪⎩

1 kW ≤ RWT ≤ 5000 kW
1 kW ≤ RPV ≤ 5000 kW
1 kW ≤ RBT ≤ 800 kW
1 kW ≤ RDG ≤ 1000 kW

(17)

Here, RWT, RPV, RBT, and RDG represent the installed power capacities
of the WT, PV array, BT system, and DG, respectively. Establishing
appropriate boundary conditions for these variables is inherently
problem-specific, and greatly influences the convergence behavior of the
applied optimization algorithms. In this context, the bounds were
determined through iterative testing and sensitivity analysis, enabling
the identification of value ranges that yielded the most favorable and
stable optimization outcomes.

3. Objective function

The ACS was designated as the primary objective function for eval-
uating the performance and economic feasibility of the microgrid
configuration. The optimization process aimed to achieve a reliable and
uninterrupted power supply while minimizing the overall system cost.
Four critical decision variables—WT capacity, PV capacity, BT storage
size, and DG capacity—were selected to determine the optimal system
configuration. ACS is a widely utilized metric in economic analyses, as it
provides a normalized cost representation over the system’s lifetime.
The configuration yielding the minimum ACS value is considered the
most cost-effective solution, provided it adheres to all predefined tech-
nical and operational constraints. In addition to ACS, other performance
indicators such as LCOE, TNPC, REF, and the capacities of PV, WT, DG,
BT, and power converters were incorporated as key decision-making
parameters in the optimization model. The mathematical formulation
of the ACS objective function is presented in Eq. (18) [55].

Objective Function = Min(ACS, TNPC, LCOE) {RWT, RPV , RBT,RDG }

(18)

ACS = Min (DGcost +

+ InverterTcost +Windcost +Batterycost + Solarcost +Gridcost) (19)

Subject to:

SOCmin ≤ SOC ≤ SOCmax

REF > 10%

In this study, the optimization of the HRES was performed using
advanced meta-heuristic algorithms, with a population size set to 40 for
each algorithm. This choice balances computational efficiency and
thorough exploration of the solution space. The system’s maximum
LPSP was constrained to LPSPmax==0.5 %, ensuring high reliability in
the energy supply. Additionally, the efficiency of the BT system was
assumed to be 90 %, which accurately reflects typical performance
under real-world conditions.
The optimization process set the maximum capacities as follows: WT

A.F. Güven et al.



e-Prime - Advances in Electrical Engineering, Electronics and Energy 13 (2025) 101099

10

at 5000 kW, PV system at 5000 kW, BTS at 800 kW, and DG at 1000 kW
to ensure optimal energy generation and storage. Moreover, the mini-
mum REF was set at 10 % to ensure that a significant portion of the
energy comes from renewable sources. Key efficiency parameters were
also incorporated into the model, including 95 % for both the converter
and inverter efficiencies, addressing the inherent inefficiencies in energy
conversion and storage processes.
By incorporating these technical constraints and efficiency parame-

ters, the model achieves a more accurate and realistic representation of
the system’s operational performance. These assumptions and con-
straints serve as the foundation for optimizing the system’s design, while
also accounting for potential uncertainties, such as input variability and
the challenges of modeling real-world conditions.

a. Cost Analysis

From an economic standpoint, this study conducts a comprehensive
assessment of the cost structure associated with the proposed HRES,
which comprises PV panels, wind turbines, BTS, diesel generators, and a
grid interface. The financial modeling approach adopted in this work
integrates a wide spectrum of economic parameters to facilitate a
detailed and reliable cost evaluation. Core elements of this model
include the initial capital expenditures, periodic operation and main-
tenance costs, component replacement costs over the system’s projected
lifetime, salvage values recoverable at the end of operation, and the
effect of real interest rates on long-term financial planning.
This rigorous methodology ensures a holistic understanding of the

economic performance of HRES configurations. By accounting for the
full financial lifecycle—from deployment to decommissioning—the
model establishes a solid foundation for computing the system’s total
annualized cost. Such detailed financial analysis is pivotal in guiding
investment decisions and operational planning, ultimately enhancing
the economic feasibility and long-term sustainability of hybrid energy
projects.
The capital investment associated with the BT subsystem is deter-

mined using the following formulation:

BatterycostC = Nbat ×

[

BATC ×
(
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)]

(20)

The BT replacement cost is calculated as:

Batterycostr = Nbat × BATCr ×
[(

1
(1+ ir)BateLF

)

×
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

]

(21)

The BT salvage cost is calculated as follows:

Batterysalcost = Nbat × BATCr

×

[(Batesalf r
BateLF

)

×
1

(1+ ir)PRJLF
×
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

]

(22)

The total BT cost is calculated as follows:

Batterycost = BatterycostC + Batterycostr + (Nbat ×BatOM) − Batterysalcost
(23)

A comprehensive evaluation of BT-related costs within the renew-
able energy system was conducted using Eqs. (20) through (23), each
capturing a distinct financial component. Eq. (20), denoted as
BatterycostC, estimates the total initial capital investment for BTS. This
formulation incorporates the number of BT units (Nbat), unit cost of each
BT (BATC), interest rate (ir), and the overall project lifetime (PRJLF),
thereby reflecting both upfront expenditure and its amortization across
the system’s operational period. Eq. (21), referred to as Batterycostr ,
quantifies the replacement costs incurred throughout the lifecycle of the
project. It introduces variables such as the replacement cost per BT
(BATCr ) and BT lifespan (BateLF) to determine the frequency and finan-
cial impact of necessary replacements. Subsequently, Eq. (22) computes

the salvage value of the batteries, labeled as Batterysalcost , which repre-
sents the residual value recoverable at the end of the project duration.
This is calculated using the salvage factor (Batesalf r) and the BT lifetime
(BateLF). Lastly, Eq. (23) aggregates all these components—initial capital
cost, replacement cost, operational and maintenance expenses (Nbat ×

BatOM), and the salvage value—to yield the overall BT cost. This multi-
faceted approach enables a holistic and accurate representation of BT
economics within the hybrid energy system.
The formula for computing the capital cost of the wind energy

component is as follows:

Windcostc = Nw ×

[

Cwr ×

(
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)]

(24)

The WT replacement cost is calculated as:

Windcostr = Nw ×
1

(1+ ir)WindLF
×

[

Cwr ×

(
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)]

(25)

The WT salvage cost is calculated as:

Windsalcost = Nw ×

[

Cwr ×
windsalf r
WindLF

×
1

(1+ ir)PRJLF
×
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

]

(26)

The total WT cost is calculated as follows:

Windcost = Nw ×WOM +Windcostc +Windcostr − Windsalcost (27)

The cost analysis of the wind energy component is described through
Eqs. (24) to (27). In Eq. (24), the WT capital cost (Windcostc ) is calculated
by considering the number of wind turbines (Nw) and the cost per WT
unit (Cwr), incorporating the interest rate (ir) and project lifetime (PRJLF)
to determine the amortized capital cost over the project’s lifetime.
Moving to Eq. (25), the WT replacement cost (Windcostr ) considers the
lifespan of the wind turbines (WindLF) and the same amortization factor,
calculating the replacement cost over the project’s duration. The salvage
value of the wind turbines at the project’s end is handled in Eq. (26),
where the WT salvage cost (Windsalcost ) is determined using the salvage
factor (windsalf r) and the remaining value of the turbines based on their
useful lifespan and cost per unit. Finally, Eq. (27) calculates the annu-
alized WT cost (Windcost, which sums the capital cost, replacement cost,
operation and maintenance expenses (Nw × WOM), and subtracts the
salvage value to determine the total annualized cost of the wind energy
component.
The operational and maintenance expenses for the solar energy

component were computed using the following methodology:
Solar Operation and Maintenance (O&M) Cost:

SolarOMcost = Nsol × SOM (28)

The solar capital cost is calculated as follows:

SolarCcost = Nsol × Cs×
(
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)

(29)

The solar annualized cost is calculated as follows:

Solarcost = SolarOMcost + SolarCcost (30)

The financial analysis of the solar energy component is described
through Eqs. (28) to (30). In Eq. (28), the Solar Operation and Mainte-
nance (O&M) Cost (SolarOMcost) is calculated by multiplying the number
of solar panels (Nsol) by the per-unit O&M cost (SOM). Eq. (29) calculates
the Solar Capital Cost (SolarCcost) usingNsol, the cost per panel (Cs), the
interest rate (ir), and the project lifetime (PRJLF) to determine the
amortized capital cost. Finally, in Eq. (30), the Solar Annualized Cost
(Solarcost) sums the O&M costs and capital costs to provide the total
annualized cost of the solar energy component. This comprehensive
approach accounts for both ongoing operational and initial investment
costs.
The calculation of operational and maintenance costs associated
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with the DG unit was performed in accordance with the procedure
outlined below.

Fuelc = 2.55× DGhr + DGPro × 0.251 (31)

DGcostc = DGSize ×

[

DGc ×

(
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)]

(32)

DGcostr = DGSize ×
1

(1+ ir)DGLF
×

[

DGRc ×

(
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)]

(33)

DGsalcost = DGSize ×

[

DGRc ×
DGsalf r

DGLF
×

1
(1+ ir)PRJLF

×
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

]

(34)

DGcost = DGc + DGRc + Fuelc − DGsalcost (35)

The cost analysis for the DG component is described through Eqs.
(31) to (34). In Eq. (31), the Fuel Cost (Fuelc) is calculated by adding the
fuel consumption rate per hour of operation (DGhr) multiplied by a fuel
cost factor of 2.55, and the DG production (DGPro) multiplied by 0.251.
Eq. (32) computes the Capital Cost (DGcostc ), which is a function of the
DG size (DGSize), the cost per unit (DGc), the interest rate (ir), and the
project lifetime (PRJLF), providing an amortized cost over the lifespan of
the project. The replacement cost (DGcostr ) in Eq. (33) is similarly based
on the generator size, the replacement cost per unit (DGRc), the DG
lifespan (DGLF), and the interest rate, calculating the cost of replacing
the generator during the project’s lifetime. In Eq. (34), the salvage cost
(DGsalcost ) considers the remaining value of the generator at the project’s
end, using the replacement cost, salvage factor (DGsalf r), and the amor-
tization formula, incorporating both the generator’s lifespan and project
lifetime. Finally, the annualized DG cost (DGcost) is calculated by sum-
ming the capital cost, replacement cost, and fuel cost, and subtracting
the salvage cost, providing a comprehensive assessment of the diesel
generator’s annualized cost over the project duration.
The inverter capital cost is calculated as follows:

InverterC = INVsize ×

(

INVC ×
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)

(36)

The inverter replacement cost is calculated as:

InverterCr = INVsize ×

[

INVCr ×

(
1

(1+ ir)INVLF

)

×

(
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)]

(37)

The inverter operation and maintenance cost are respectively
calculated as follows:

InverterOM = INVsize × INVOM (38)

The inverter salvage fraction is calculated as:

INVsalf r = |INVLF − PRJLF | (39)

The inverter salvage cost is calculated as:

InvertersalC = INVsize ×

(

INVC ×
INVsalf r

INVLF
×

1
(1+ ir)PRJLF

×
ir × (1+ ir)PRJLF

(1+ ir)PRJLF − 1

)

(40)

The total inverter cost is calculated as follows:

InverterTcost = InverterC + InverterCr + InverterOM − InvertersalC (41)

The financial analysis for the inverter component is described
through Eqs. (36) to (41). In Eq. (36), the inverter capital cost (InverterC)
is calculated by multiplying the inverter size (INVsize) by the unit cost of
the inverter (INVC), along with the amortization factor, which includes
the interest rate (ir) and the project lifetime (PRJLF). Eq. (37) calculates
the inverter replacement cost (INVCr) using the inverter size, the

replacement cost per unit (INVCr), and the inverter lifespan (INVLF),
alongside the interest rate and project lifetime. The inverter operation
and maintenance cost (INVOM) in Eq. (38) is straightforwardly computed
by multiplying the inverter size by the per-unit operation and mainte-
nance cost (INVOM). In Eq. (39), the inverter salvage fraction (INVsalf r) is
calculated based on the difference between the inverter lifespan and the
project lifetime. This factor is used in Eq. (40), which computes the
inverter salvage cost (InvertersalC ), accounting for the inverter size, unit
cost, and amortization over the project lifetime. Finally, Eq. (41) cal-
culates the total inverter cost (InverterTcost) by summing the capital cost,
replacement cost, and operational costs, while subtracting the salvage
cost, providing the total cost for the inverter component over the pro-
ject’s lifecycle.
The grid-purchased energy cost is calculated as:

Gridcost =
∑(

Egridp
)
× 0.25 −

∑(
Egrids

)
× 0.01 (42)

Eq. (42), referred to as Gridcost defines the computational framework
for evaluating the net financial cost arising from bidirectional energy
exchanges between the hybrid system and the utility grid. This formu-
lation incorporates both the COE drawn from the grid and the revenue
generated from excess energy exported back to it. Specifically, Gridcost is
computed by multiplying the total energy imported from the grid Egridp ,
by a unit price of 0.25, and subtracting the monetary value of the total
energy exported Egrids , credited at 0.01 per unit. This pricing structure
reflects a common economic asymmetry in grid-connected energy sys-
tems, wherein the cost of procuring electricity from the grid exceeds the
compensation received for selling surplus energy. The equation thus
effectively quantifies the financial burden imposed by grid reliance and
underscores the economic advantage of minimizing grid imports while
maximizing self-sufficiency in energy generation.

4. Methodology

The performance of a HRES is primarily governed by the output
behavior of RESs and the demand characteristics of the associated load.
These two components form the core inputs that determine the net en-
ergy balance within the system. Since RES output is intrinsically linked
to location-specific meteorological conditions, the sizing of hybrid sys-
tem components becomes a function of environmental variables such as
solar irradiance, wind speed, and ambient temperature, as formulated in
Eq. (1). Thus, proper HRES design necessitates accurate incorporation of
climate-dependent inputs into system modeling.
This section outlines the methodological framework adopted in this

study. It introduces the metaheuristic algorithms utilized for component
sizing, explains the procedures followed in configuring the system ar-
chitecture, and describes the energymanagement strategies employed to
ensure stable operation under dynamic generation and load conditions.
The mathematical formulation of the objective functions and associated
constraints is provided separately in Section 3.3.
Four metaheuristic algorithms—Moth-Flame Optimization Algo-

rithm (MFOA), WOA, Flower Pollination Algorithm (FPA), and Genetic
Algorithm (GA)—were selected for performance benchmarking. These
algorithms were chosen based on their algorithmic diversity and
demonstrated effectiveness in engineering optimization problems,
including HRES design. MFOA uses flame-based spiral search mecha-
nisms, WOA simulates bubble-net hunting behavior of whales to balance
exploration and exploitation, FPA leverages Lévy flight-based pollina-
tion dynamics, and GA applies evolutionary principles such as crossover
and mutation to navigate the solution space.
The comparative use of these algorithms allows for an objective

evaluation of convergence efficiency and solution quality under
consistent system modeling constraints. To maintain fairness, all algo-
rithms were implemented using fixed parameter values obtained from
relevant literature, and no algorithm-specific tuning was performed.
Although parameter sensitivity analysis can offer further insight into
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algorithm robustness, it was deliberately excluded to avoid biasing the
benchmarking process. Future studies may consider such analyses as
part of adaptive algorithm design for HRES optimization.

4.1. HRES sizing and optimization

The process of Hybrid Renewable Energy System (HRES) sizing can
be approached through a variety of optimization methodologies,
depending on the specific parameters prioritized in a given study. En-
ergy optimization models serve as analytical frameworks that support
strategic energy planning by projecting the possible configurations and
performance of energy systems under defined conditions [56]. These
models not only enable the evaluation of technological feasibility but
also facilitate long-term planning by incorporating structural dynamics
and policy recommendations [57].
In this research, MATLAB was employed as the computational plat-

form to streamline the optimization process and determine the most
efficient system configuration for the selected geographical site. The
modeling procedure required high-resolution hourly input data,
including meteorological parameters (ambient temperature, solar irra-
diance, and wind velocity), the electrical load profile of the case study,
and the techno-economic specifications of each system component [58].
The overall architecture of the input-output flow and the algorithms
implemented during the sizing phase are schematically presented in
Fig. 4.

4.2. Energy management system

A robust Energy Management System (EMS) is a pivotal element in
microgrid design. The variable outputs exhibited by RESs, owing to their
nature, underscore the importance of an effective EMS. Its main objec-
tive, with the established operational strategy in mind, is to manage the
power flow among different microgrid components [59].
The operational strategy leverages various mechanisms andmodes to

ensure an optimal energy distribution and utilization. In this study, we
designed an EMS controller based on a rule-driven algorithm tailored to
a specific microgrid model. The well-defined operational modes of the

EMS controller are as follows:
Mode 1: In this mode, the energy load demand is directly satisfied by

the power produced by the WT and PV resources. Any excess energy is
used to charge the BT if the BT energy remains below its maximum
threshold. (EBatt(t) < EBatt max(t))
Mode 2: When RE generation surpasses the load demand

((Pw+Ps ∗uinv) ≥ PL) and the BT reaches its full capacity (EBatt(t) =

EBatt max(t)), the surplus energy is fed back to the grid, thus ensuring no
waste of the generated RE.
Mode 3: This mode is triggered when the energy generated by the

WT and PV resources does not satisfy load demand
(EBatt(t) > EBatt min(t)). In such cases, the energy stored in the BT is used
to compensate for the shortage.
Mode 4: The BT is exhausted, and the energy generated by the WT

and PV resources is insufficient to meet the load demand
(EBatt(t) < EBatt min(t)). To meet the load demand, the energy is drawn
from either the DG or the grid. An optimization algorithm determines
whether the DG operation or grid energy use will be used. An option that
is more affordable or practical is chosen for use.
Fig. 5 presents a schematic representation of the flow algorithm for

the selected HRES model. It succinctly portrays the intricate decision-
making process, highlighting the interactions among various compo-
nents based on the real-time energy dynamics. Fig. 6 shows the charge
operational strategy. Through its flowchart, it meticulously outlines the
sequence of operations that the EMS follows during periods of surplus
energy. Fig. 7 pivots the discharge operational strategy, laying out the
systematic approach that the system adopts when facing a deficit in the
generated energy.
Collectively, these figures provide readers with a comprehensive

overview of the microgrid’s energy management mechanisms, empha-
sizing the equilibrium between generation, storage, and consumption.

4.3. Genetic algorithm (GA)

GA is a biological evolution model or construct that was created by
John Holland et al. in the 1960s and the 1970s, and is founded upon

Fig. 4. Sizing Methodology.
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Charles Darwin’s natural selection theory. Hollands were likely the first
to study adaptive and artificial systems using the concepts of crossover,
recombination, mutation, and selection. These genetic operators are
fundamental building blocks of the GA. Since then, numerous variations
of genetic algorithms have been created and used to solve a broad
spectrum of optimization problems, from financial markets to multi-
objective engineering optimization, and from graphic coloring to
pattern recognition. In many optimization techniques, researchers
carefully move from one point in the decision space to another while
making decisions based on a set of transition rules. This point-to-point
technique poses a risk because it may produce the wrong optimum in
a multioptimum search space. Compared to point-to-point methods, GAs
operate based on a rich database of points that climb concurrently
parallel to numerous optima, which reduces the likelihood of finding a
false optimum [60]. In Fig. 8, the pseudocode for the GA is presented.
The steps listed below show how the GA operates [61].

1. The initial population or solution space containing potential solu-
tions was characterized.

2. A fitness function is used to assess each solution in the population.
The search was terminated if the stopping criterion was satisfied. If
not, proceed to the next action.

3. The best solutions are retained for the following generation, whereas
the rest are eliminated.

4. Using crossover and mutation operators, new individuals are created
in the third step from the stored individuals. The population size
produced in this step matches that of the starting population.

5. As mentioned in the second step, the new population was reeval-
uated. The algorithm is stopped if the stopping criterion is satisfied or
the maximum number of iterations has been completed; otherwise,
steps 3–5 are repeated.

The Genetic Algorithm (GA) employs biologically inspired operators
such as crossover and mutation to evolve candidate solutions. In this
study, GA was configured with a population size of 40 and run for 100
iterations, providing a stable computational baseline for performance
comparison.
The crossover probability was set to Pc = 0.8, enabling extensive

mixing of genetic material between parent solutions. The mutation
probability was chosen as Pm = 0.2, introducing variability and helping
the algorithm explore less-visited regions. The distribution indices ηc =
20 and ηm = 20 were used to control the spread of crossover and mu-
tation effects, respectively. Higher values encourage small, localized
adjustments to maintain solution feasibility.
All decision variables were constrained by the same lower and upper

bounds used in other algorithms. These parameters reflect commonly
accepted values in GA literature and were applied without tuning to
ensure comparability.

Fig. 5. Grid-connected hybrid power system design flow chart.
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4.4. Flower pollination algorithm (FPA)

Researchers have used various strategies because analytical methods
often fail to solve complex structural problems. Heuristic and meta-
heuristic optimization techniques have been used to solve various is-
sues to produce the optimum outcome in the shortest amount of time.

Based on the idea that the goal of flowers in evolution is the survival of
the species and production of the most suitable population in terms of
quantity and quality, the Flower Pollination Algorithm (FPA) was pro-
posed by Yang in 2012 [62]. This algorithm is a meta-heuristic method
developed based on inspiration from the reproduction process of flow-
ering plants. The primary goal of flower pollination is to provide the best

Fig. 6. Discharge function flow chart.

Fig. 7. Charge function flow chart.
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vitality and biological reproductive stages. There are two types of
pollination, biotic and abiotic. Ten percent of all species carry out
abiotic reproduction, which involves reproduction without a pollinator,
whereas nearly 90 % of all species use the biotic method of pollination
and reproduce by transporting pollen with the aid of organisms such as
birds and insects. The remaining, very small proportion of flowering
plants makes use of natural phenomena such as wind and water diffusion
to reproduce.
There are two different pollination methods, cross-pollination and

self-pollination. Although pollen from various flowers is used in cross-
pollination, self-pollination uses either pollen produced by the plant
itself or pollen from a different flower of the same species. Utilizing
natural pollinators such as bees, cows, and birds, biotic pollination can
occur at a distance from their origin. Although this process is global, the
motion traits of a carrier resemble those of a Lévy flight. Using the four
fundamental principles described below, a flower pollination algorithm
was created to resolve engineering problems.

1. In accordance with the Lévy flight of the carriers, biological and
cross-pollination is the global pollination process.

2. Local pollination is referred to as abiotic pollination or spontaneous
pollination.

3. The flower constant varies in proportion to how closely related
different flower species are, and it is expressed as the probability of
reproduction.

4. A transition probability variable with a value in the range of [0–1]
controls both local and global pollination processes.

Although each species produces multiple flowers and each flower
contains billions of pollen gametes in the real world, the algorithm is
constructed under the assumption that each species produces only one
flower and one pollen gamete per flower. Thus, it is no longer necessary
to express and determine pollen separately. The mathematical expres-
sion for the flower constant is given by Eq. (43).

xt+1 = xti + γL(λ)
(
g∗ − xti

)
(43)

Here, xt+1 is the solution vector, g* is the best available solution, and
γ ad is the step-size adjustment factor.
To account for pollination force, the Lévy distribution was used.

Insect movement can be depicted using the Lévy distribution as insects
travel long distances. Eq. (44) provides Lévy’s mathematical expression.

L ∼
λΓ(λ)sin πλ

2
π

1
S1+λ, (s≫s0 >0) (44)

where Γ(λ) is the standard gamma function (i.e., s step size). This dis-
tribution is valid for steps where s > 0. In theory, s0≫ 0 is necessary;
however, it can be as small as s0 0.1. Eq. (45) illustrates Rule 2 and Rule
3 for local pollination.

xt+1 = xti+ ∈
(
xtj − xtk

)
(45)

Here, xti and xtk are the pollen types from different flowers of the same
plant species.
The most crucial aspect of this optimization algorithm is its use of the

Lévy distribution to search for numerous solution points in the search
space. The optimization logic of the algorithm entails using the biotic
pollination model, as used in flowers, to identify the solution points at a
great distance, and using the abiotic pollination model to look into the
area around the solution points. The working steps of the algorithm are
illustrated in the pseudo-code provided below in Fig. 9 [63].
The FPA is inspired by the natural pollination process, where global

and local pollination modes are alternated probabilistically. In this

Fig. 8. Pseudo-code of GA.

Fig. 9. Pseudo-code of FPA.
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work, the algorithm was executed with 40 population members and 100
iterations, in accordance with the general optimization framework of the
study.
The switching probability p= 0.8 prioritizes global search using Lévy

flight, simulating the long-distance movement of pollinators. The Lévy
distribution is governed by β = 1.5, allowing for occasional large jumps
that help the algorithm escape local optima. Local pollination steps are
performed when the random threshold falls below p, encouraging fine-
tuning around promising regions.
These parameter choices enhance the algorithm’s capability to

navigate complex search landscapes. Lower and upper bounds for de-
cision variables were maintained identically to the other metaheuristics.
No parameter tuning was applied to preserve benchmark neutrality.

4.5. Whale optimization algorithm (WOA)

The WOA, introduced by Mirjalili and Lewis in 2016, is a population-
based metaheuristic inspired by the unique hunting techniques of
humpback whales. Despite being a relatively recent addition to the field
of optimization, WOA has found widespread application in solving
complex engineering problems across diverse domains such as clus-
tering, classification, image processing, networking, and task scheduling
[59].
The algorithm emulates the specialized bubble-net hunting strategy

employed by humpback whales, which predominantly feed on small fish
and krill. This strategy involves the generation of bubble clouds through
coordinated exhalation while the whale swims upward. These spiraling
bubble structures serve to confuse and encircle prey, gradually nar-
rowing the radius as the whale ascends toward the surface. The
shrinking bubble ring not only conceals the predator’s approach but also
facilitates the localization, immobilization, and eventual capture of the
prey [65].
This natural hunting behavior has been abstracted into the WOA’s

search mechanism. As visualized in Fig. 10, the spiral bubble-net tech-
nique enables whales to enclose targets near the water’s surface using
helical movements and concentric formations. This biologically inspired
process has been mathematically translated into the core exploitation
phase of the WOA, which governs local search and convergence around
optimal candidate solutions.
Within the framework of the WOA, the "hunt" metaphorically rep-

resents the optimal solution to the given problem, whereas each indi-
vidual whale agent corresponds to a feasible candidate solution within
the search space. The optimization process initiates with a population of
agents defined by the user and iteratively refines their positions based on

the location of the currently best-performing agent. This process con-
tinues until the predefined number of iterations is completed, thereby
enabling a systematic exploration and exploitation of the solution space.
The WOA is structurally composed of three distinct phases, each

mathematically formulated to mimic specific natural behaviors: (i) prey
encirclement, which facilitates convergence around promising solu-
tions; (ii) the bubble-net attack, responsible for exploitation through
shrinking and spiral movements; and (iii) randomized prey search,
which enhances global exploration and mitigates premature conver-
gence. Each component contributes uniquely to the overall search dy-
namics and is modeled through specific update equations that
collectively define the behavior of the algorithm.

4.5.1. Encirclement mechanism
Once the optimal search agent—i.e., the one yielding the best fitness

value—has been identified, the remaining agents adjust their positions
relative to this leader to simulate the encirclement behavior observed in
nature. This process models the convergence of the population toward
the most promising region in the search space. The mathematical rep-
resentation of this mechanism is described by Eqs. (46) and (47):

D→→ =

⃒
⃒
⃒C
→→.X∗→̅̅→

(t) − X→→(t)
⃒
⃒
⃒ (46)

X→→(t+1) = X∗→̅̅→
(t) − A→→.D→→ (47)

In these equations, t denotes the current iteration, X∗→̅̅→
(t) represents

the position vector of the current best solution, and the operator ‘⋅’ refers
to the Hadamard (element-wise) product. The vectors A→→ and C→→ are
control parameters defined by Eqs. (48) and (49), respectively:

A→→ = 2 a→→ r→→ − a→→ (48)

C→→ = 2 r→→ (49)

Here, r→→ represents a random vector that takes values in the range
of [0,1], and a→→ is a vector that decreases from 2 to 0 over iterations.
Here, r→→ is a randomly generated vector with elements uniformly

distributed in the interval [0,1], and a→→ is a linearly decreasing vector
that transitions from 2 to 0 throughout the optimization process. This
mechanism encourages exploitation by guiding agents toward the cur-
rent best solution, thereby enhancing convergence efficiency without
prematurely limiting the search space.

Fig. 10. Bubble net hunting technique [64].
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4.5.2. Bubble-Net feeding mechanism
As depicted in Fig. 10, the bubble-net hunting strategy in the WOA

integrates two possible movement patterns: spiral motion and circular
shrinkage around the prey. Each agent in the population is granted an
equal probability (50 %) of executing either strategy at each iteration.
The mathematical representation of the shrinking encirclement
behavior is given in Eq. (48), while the spiral trajectory toward the prey
is described by Eq. (50). These two approaches collectively constitute
the exploitation phase of the algorithm, enhancing the local search
capability around the identified best solution. The update rule for the
position of the search agent is governed by a probabilistic decision
process. The following equation defines the position update mechanism:

In this formulation, X∗→̅̅→
(t) represents the current best solution, A→→

and D→→ are coefficient and distance vectors respectively, b is a constant
defining the shape of the logarithmic spiral, and l ∈[− 1,1] is a randomly
generated number. The variable p, sampled uniformly from the interval
[0,1], determines the selection between the spiral and shrinking mo-
tions. This probabilistic switching mechanism enables the algorithm to
maintain a balance between intensification and diversification during
the optimization process.

4.5.3. Randomized prey search strategy
Beyond employing the bubble-net feeding strategy, humpback

whales are also capable of engaging in prey search through stochastic
movement patterns. To simulate such behavior in the WOA, position
updates are performed using a randomly selected search agent rather

than the global best agent identified thus far. This mechanism utilizes
vector A→→, where values exceeding 1 or below − 1 are applied to
facilitate movement away from the reference whale, thereby enhancing
solution diversity.
In contrast to the spiral-shaped bubble-net mechanism, this ran-

domized strategy aims to intensify global exploration by dynamically
altering the agent’s position using alternate candidates. The incorpora-
tion of A→→ and a randomly chosen position vector allows the algorithm
to escape potential entrapment in local optima and encourages broader
search space traversal. The mathematical formulation guiding this
behavior is expressed by Eqs. (51) and (52):

D→→ =

⃒
⃒
⃒
⃒C
→→.X→→

rand − X→→
⃒
⃒
⃒
⃒ (51)

X→→(t+1) = X→→
rand − A→→.D→→ (52)

At each iteration, the search agent updates its location based on the
randomly selected peer, treating it as the provisional best. The control
parameter aaa, which regulates exploration and exploitation, linearly
decreases from 2 to 0 over the course of iterations. Meanwhile, the
probability parameter p-value in Eq. (50) determines whether the agent
follows a circular or spiral trajectory. The algorithm concludes upon
reaching the optimal solution and fulfilling the convergence condition.
A detailed representation of this process is presented in the corre-
sponding pseudocode given in Fig. 11.
The WOA mimics the bubble-net hunting strategy of humpback

whales. Its performance hinges on adaptive parameters that control both
exploration and exploitation. In this study, WOAwas implemented using
a 40-agent population over 100 iterations, aligned with the other tested
algorithms for benchmarking consistency.
The coefficient a linearly decreases from 2 to 0, which regulates the

balance between exploitation (shrinking encircling behavior) and
exploration (random search). The parameter a2, ranging from − 1 to − 2,
governs the logarithmic spiral movement, enhancing the algorithm’s
local search capability. The switching probability p determines whether
the next position will be updated using direct encircling or spiral
updating. A fixed b = 1 was used to shape the spiral pattern.
These parameters allow WOA to converge rapidly when good solu-

tions are identified, while still enabling global search in early iterations.
The solution space bounds remained consistent with the other algo-
rithms, ensuring methodological fairness.

4.6. Moth-flame optimization algorithm (MFOA)

A metaheuristic algorithm created by Mirjalili and motivated by
population theories is called the MFO algorithm. It is based on the ca-
pacity of moths to maintain a specific angle to the moon while flying
straight and at night. Moths are assumed to move towards the flame in
this method at a fixed angle, and they are entangled in this spiral path
that leads to the flame. Moths were initially generated randomly within
a set of algorithmic parameters. The best positions were then marked
with frames after the fitness value was calculated. The number of flames
and positions of the moths were updated after determining the distance
to the corresponding moth. Once the termination criteria are satisfied,
new positions are created, and the previous procedure is repeated. The

X→→(t+1) =

{

X∗→̅̅→
(t) − A→→.D→→, if p < 0.5Dʹ→̅̅→

.ebl.cos(2πl) + X∗→̅̅→
(t), if p ≥ 0.5

}

(50)

Fig. 11. Pseudo-code of the native WOA algorithm.
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position of the moth in relation to the flame at a particular moment is
taken as the solution, even though the flame is considered the best op-
tion in the MFOA. All options for which there is a best optimal solution
are represented by the moth population.
When a moth flies in a spiral, it is either useless or fatal because the

light is close to the Moon while still maintaining a similar angle to the
light source [67]. Fig. 12 presents a conceptual representation of this
behavior. The moth finally approached the flame, as shown in Fig. 12.
To propose an optimizer algorithm called the MFOA, this behavior is
mathematically modeled in the following subsection.

4.6.1. Creation of the first moth population
The variables of the problem are the positions of the moths in space,

and it is assumed that the candidate solutions in the proposed MFOA are
the moths. Moths can therefore fly by modifying their position vectors in
1-dimensional, 2-dimensional, 3-dimensional, or hyper-dimensional
spaces. The long moth-flame algorithm uses two populations. There-
fore, six matrices were generated: two matrices for the moths (OM), two
matrices for the flames (OF), and another two for the initial populations
of moths (M) and flames (F) for convenience.
As a population-based algorithm, the MFOA represents the quantity

of cluster moths in a matrix as follows:

M =

⎡

⎣
m1,1 ⋯ m1,d

⋮ ⋮ ⋮
mn,1 ⋯ mn,d

⎤

⎦ (53)

Here, n represents the number of moths searched, and m represents
the number of dimensions. It should be noted that both the moths and
flames are solutions. This distinction lies in the manner in which we
handle and update them throughout each iteration. Eq. (54) is used to
record all moth fitness values.

OM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

OM1

OM2

⋮
OM2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(54)

The remaining elements of the MFOA were the flames. Flames are
depicted in the following matrix with their fitness function vectors in a
3-dimensional space:

F =

⎡

⎣
F1,1 ⋯ F1,d
⋮ ⋮ ⋮
Fn,1 ⋯ Fn,d

⎤

⎦ (55)

OF =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

OF1
OF2

⋮
OF2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(56)

4.6.2. Updating moth positions
MFOA combines global optimal of optimization problems using three

different functions. Eq. (57) defines these functions:

MFO = (I,P,T) (57)

The function I is in charge of producing the moth matrix population
and fitness values, it has no input and produces the values M and OM.
This function’s methodological model is represented by Eq. (58):

I : ∅→{M, OM } (58)

The main mathematical operation of this method, which moves
moths through the search space, is represented by the P function. This
function starts with the matrix M and returns the updated matrix.
The movement of the moth "around" the flames is the primary

mathematical function represented by the function P in this approach.
Updates to the input M and the output M are as follows:

P : M→M (59)

The termination criterion’s role in analysis: If the termination cri-
terion is met, T returns true; otherwise, it returns false.

T : M→{True, False } (60)

The algorithm begins by producing the initial solution of I using Eq.
(58). Following this, Eq. (59) is used by the function P to begin updating
the positions of the moths. It continues, accounting for the flames during
each iteration, until T is reached.
The following formula represents the function used to perform

random distribution:

M(i, j)= ((ub(i) − lb(i)).rand(i) + lb(i) (61)

In light of these considerations, the MFOA’s definition of a

Fig. 12. a) Transverse orientation, b) Flight path in a spiral that avoids nearby light sources.
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logarithmic spiral is as follows:

S
(
Mi, Fj

)
= Di.ebt .cos(2πt) + Fj (62)

Di =
⃒
⃒Fj − Mi

⃒
⃒ (63)

Here,Mi is a constant that defines the ith moth, Fj is the jth flame, Di

is the distance between the jth flame and the ith moth, b is a constant
value that describes the shape of the logarithmic spiral, and t is a random
value in the interval of [1,1]. The ’spiraling movement of the moths in
the search space of the MFOA toward the flame strikes a balance be-
tween exploitation and exploration.
Hence, the moth’s curvilinear trajectory was captured using Eq. (62).

This mathematical representation elucidates the subsequent positioning
of each moth in relation to the flame. The parameter ’t’ in the spiral
equation defines the proximity of the moth to the flame for upcoming
positions (with t=− 1 signifying the nearest and t = 1 being the most
distant). This implies that a hyperelliptical zone can be envisioned
around the flame, determining the moth’s ensuing location within this
region. The pivotal component of the introduced approach is the helical
trajectory as it dictates the positional updates of moths concerning the
flames. Rather than restricting a moth’s movement to the space between
flames, the spiral equation allows it to navigate in the vicinity of a flame.
This ensures comprehensive probing and efficient utilization of the
search domain. Fig. 13 presents a visualization that encapsulates the

logarithmic spiral, the flame’s encompassing zone, and the influence of
varied ’t’ values on the trajectory

4.6.3. Updating the number of flames
This section describes how the MFOA has been improved (i.e.,

updating the positions of the moths at n different positions in the search
space can reduce the chances of using the best optimal solutions). This
issue, as expressed in Eq. (64), can be resolved by incorporating flame
number reduction as an adaptive mechanism in the iteration function.
This process is illustrated in Fig. 14.

Flame no = round
(

N − l ∗
N − l
T

)

(64)

where, N represents the maximum number of flames, l is the valid
number of iterations, and T is the maximum number of iterations.
The MFOA relies on the navigation behavior of moths in nature,

modeled mathematically as a logarithmic spiral movement around
flames (candidate solutions). In the current study, MFOA was executed
with a population size of 40 and 100 iterations, ensuring a consistent
search effort across all tested algorithms.
The parameter a, linearly decreasing from − 1 to − 2 during the it-

erations, controls the convergence behavior by shrinking the search
space. The coefficient b was set to 1, influencing the spiral shape of the
moths’ trajectory. The variable t introduces randomness within the
logarithmic spiral, further promoting exploration. These parameter
settings ensure a balanced transition from exploration to exploitation,
essential for avoiding local minima.
The lower and upper bounds were set to [1, 1, 1, 1] and [5000, 5000,

800, 1000], respectively, for the four optimization variables (PV, WT,
BT, DG). These bounds reflect realistic sizing ranges under techno-
economic constraints. The algorithm maintained consistent perfor-
mance without parameter tuning, ensuring a fair comparison with other
techniques. Pseudo-code of MFOA is shown in Fig. 15.

5. Simulation results and discussion

The results of this study revealed an objective function depending on
reducing the ACS, TNPC, and LCOE values of the grid-connectedWT, PV,
DG, and BT components of the proposed HRES. GA, FPA, WOA, and
MFOA methods were used for the solution, and their performances were
assessed. To meet the electricity load demand with high reliability,
numerous constraints including LPSPmax, RE REF, SOC, and optimal

Fig. 13. Space around the flame, the logarithmic spiral, and position in relation
to t [66].

Fig. 15. MFOA pseudo-code.

Fig. 14. Adaptive decrease in flame count over multiple iterations.
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Table 4
Comparative Optimal Sizing using MFOA, WOA, FPA, and GA Techniques
(Under LPSPmax=2 % Limitation).

MFOA WOA FPA GA

​ LPSPmax = 2%
Execution time (sec) 410.285 454.9739 429.1147 499.0886
Wind Turbines (kW) 1 1.0035 1 1
Solar Power (kW) 2.1098 ×

103
2.1073 ×

103
2.0751 ×

103
2.1147 ×

103

Battery Units 1.9076 ×

102
1.9200 ×

102
1.8277 ×

102
1.9532 ×

102

Total Wind Energy
(kWh)

125.5744 126.0249 125.5744 125.5744

Total Solar Energy
(kWh)

3.0562 ×

106
3.0526 ×

106
3.0059 ×

106
3.0633 ×

106

Diesel Generator
Energy(kWh)

– – – –

Wasted Energy (kWh) – – – –
Total Load Demand
(kWh)

2.1776 ×

106
2.1776 ×

106
2.1776 ×

106
2.1776 ×

106

TGE – – – –
Batin (kWh) 1.0373 ×

105
1.0388 ×

105
1.0757 ×

105
1.0303 ×

105

Batout (kWh) 1.0724 ×

106
1.0720 ×

106
1.0608 ×

106
1.0745 ×

106

LCOE ($/kWh) 0.1427 0.1427 0.1428 0.1427
Grid Sale (kWh) 1.3085 ×

106
1.3051 ×

106
1.2685 ×

106
1.3136 ×

106

Grid Purchase (kWh) 4.6728 ×

105
4.6771 ×

105
4.8100 ×

105
4.6466 ×

105

TNPC ($) 3.4721 ×

106
3.4700 ×

106
3.4155 ×

106
3.4839 ×

106

REF ( %) 100 100 100 100
Annual Cost ($) 3.1078 ×

105
3.1079 ×

105
3.1092 ×

105
3.1085 ×

105

Wind Cost ($) 404.8825 406.3348 404.8825 404.8825
Solar Cost ($) 1.8993 ×

105
1.8970 ×

105
1.8680 ×

105
1.9037 ×

105

DG Cost ($) – – – –
Battery Cost ($) 1.3631 ×

104
1.3719 ×

104
1.3060 ×

104
1.3957 ×

104

Inverter Cost ($) 3.0598 ×

103
3.0598 ×

103
3.0598 ×

103
3.0598 ×

103

Table 5
Comparative Optimal Sizing using MFOA, WOA, FPA, and GA Techniques
(Under LPSPmax=5 % Limitation).

MFOA WOA FPA GA

​ LPSPmax = 5%
Execution time (sec) 422.386 477.7378 457.2875 540.7758
Wind Turbines (kW) 1 1 1.0040 1
Solar Power (kW) 2.0624 ×

103
2.0589 ×

103
2.0745 ×

103
2.0630 ×

103

Battery Units 1.8370 ×

102
1.8654 ×

102
2.0705 ×

102
2.0471 ×

102

Total Wind Energy
(kWh)

125.5744 125.5744 126.0822 125.5744

Total Solar Energy
(kWh)

2.9875 ×

106
2.9825 ×

106
3.0051 ×

106
2.9885 ×

106

Diesel Generator
Energy (kWh)

– – – –

Wasted Energy
(kWh)

– – – –

Total Load Demand
(kWh)

2.1776 ×

106
2.1776 ×

106
2.1776 ×

106
2.1776 ×

106

TGE – – – –
Batin (kWh) 1.0154 ×

105
1.0166 ×

105
9.8944 ×

105
1.0002 ×

105

Batout (kWh) 1.0389 ×

106
1.0387 ×

106
1.0471 ×

106
1.0441 ×

106

LCOE ($/kWh) 0.1395 0.1395 0.1396 0.1395
Grid Sale (kWh) 1.2735 ×

106
1.2685 ×

106
1.2829 ×

106
1.2687 ×

106

Grid Purchase (kWh) 4.5710x ×
105

4.5739 ×

105
4.4709 ×

105
4.5083 ×

105

TNPC ($) 3.3920 ×

106
3.3903 ×

106
3.4344 ×

106
3.4158 ×

106

REF ( %) 100 100 100 100
Annual Cost ($) 3.0382 ×

105
3.0383 ×

105
3.0398 ×

105
3.0386 ×

105

Wind Cost ($) 404.8825 404.8825 406.5198 404.8825
Solar Cost ($) 1.8566 ×

105
1.8535 ×

105
1.8675 ×

105
1.8572 ×

105

DG Cost ($) – – – –
Battery Cost ($) 1.3126 ×

104
1.3329 ×

104
1.4795 ×

104
1.4628 ×

104

Inverter Cost ($) 3.0598 ×

103
3.0598 ×

103
3.0598 ×

103
3.0598 ×

103

Table 3
Comparative Optimal Sizing using MFOA, WOA, FPA, and GA Techniques (Under LPSPmax=0.5 % Limitation).

MFOA WOA FPA GA

​ LPSPmax = 0.5%
Execution time (sec) 336.5487 491.2846 555.4989 612.0884
Wind Turbines (kW) 1.000011 1 1 1
Solar Power (kW) 2.1343 × 103 2.1299 × 103 2.1317 × 103 2.1232 × 103

Battery Units 1.8998 × 102 1.9272 × 102 2.0745 × 102 2.1958 × 102

Total Wind Energy (kWh) 125.5758 125.5744 125.5744 125.5744
Total Solar Energy (kWh) 3.0918 × 106 3.0854 × 106 3.0880 × 106 3.0757 × 106

Diesel Generator Energy Generation (kWh) – – – –
Wasted Energy (kWh) – – – –
Total Load Demand (kWh) 2.1776 × 106 2.1776 × 106 2.1776 × 106 2.1776 × 106

TGE – – – –
Batin (kWh) 1.0506 × 105 1.0527 × 105 1.0412 × 105 1.0401 × 105

Batout (kWh) 1.0882 × 106 1.0877 × 106 1.0915 × 106 1.0923 × 106

LCOE ($/kWh) 0.1443 0.1443 0.1444 0.1443
Grid Sale (kWh) 1.3284 × 106 1.3222 × 106 1.3207 × 106 1.3069 × 106

Grid Purchase (kWh) 4.7337 × 105 4.7398 × 105 4.6929 × 105 4.6831 × 105

TNPC ($) 3.5085 × 106 3.5054 × 106 3.5256 × 106 3.5255 × 106

REF ( %) 100 100 100 100
Annual Cost ($) 3.1426 × 105 3.1427 × 105 3.1443 × 105 3.1433 × 105

Wind Cost ($) 404.8870 404.8825 404.8825 404.8825
Solar Cost ($) 1.9214 × 105 1.9174 × 105 1.9190 × 105 1.9114 × 105

DG Cost ($) – – – –
Battery Cost ($) 1.3575 × 104 1.3771 × 104 1.4823 × 104 1.5690 × 104

Inverter Cost ($) 3.0598 × 103 3.0598 × 103 3.0598 × 103 3.0598 × 103
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system sizing were taken into account during the optimization process of
the HRES with the PV/WT/DG/BT components. A sensitivity analysis
was performed in the simulation to ascertain the impact of various
LPSPmax values on system performance. The values of ACS, TNPC, and
LCOE decreased when the configurations of the LPSP values of 0.5 %, 2

%, 5 %, and 10 % were examined. The outputs of the optimization
process are presented in Tables 3, 4, 5, and 6.
The energy cost findings obtained in this study demonstrated con-

sistency with those reported in previous literature. For instance, Güven
et al. [8] examined an off-grid hybrid system comprising PV, WT, (DG,
and BT components for geographical regions comparable to the one
analyzed here in Their study, which assumed a LPSP of zero, utilized the
harmony search optimization algorithm and yielded the following re-
sults: a LCOE of $0.2012/kWh, TNPC of $6.5027 × 106, ACS of $4.0084
× 105, and wasted energy totaling 1.8431 × 106 kWh. Additionally,
Güven and Samy [9] performed a separate techno-economic assessment
involving off-grid fuel cell (FC), biomass gasifier (BG), WT, and PV units.
Through application of the hybrid firefly genetic algorithm (HFGA), the
optimal system configuration was found to include 1094.68 kW of wind
capacity, 2256.17 kW of PV capacity, and 775 hydrogen storage units,
resulting in an ACS of $2921,702.30, a TNPC of $2.4639 × 107, and an
LCOE of $1.3416/kWh. Compared to these previous works, the proposed
system developed using the Modified Firefly Optimization Algorithm
(MFOA) in the present study exhibited superior performance in terms of
cost efficiency, optimal sizing of RESs, and convergence speed. As pre-
sented in Table 3, the LCOE for the proposed HRES configuration was
calculated to be $0.1443/kWh, with a TNPC of $3.5085 × 106 and an
ACS of $3.1426 × 105. The REF achieved a full 100 %, while the
maximum allowable LPSPmax was constrained to 0.5 %. Furthermore, a
total of 1.3284 × 10⁶ kWh of surplus energy was exported to the utility
grid, contributing to continuous annual revenue generation.
The total cost, maintenance and operating costs, project lifespan,

quantities and costs of every hybrid power system generation compo-
nent before the project is started, and similar factors are all price details.
The designs of the MFOA, WOA, FPA, and GAmethods, which are shown
in Table 3, were developed separately, and the results were evaluated to
achieve solutions with high accuracy in the shortest amount of time.
Considering the findings of the optimization, the proposed system

utilizes solar and wind energy resources, batteries, and a grid to meet the
total energy demand. This led to the conclusion that it is the most
economically, technically, environmentally, and socially viable hybrid
system. The annual average monthly energy balance is shown in Fig. 16.
The use of solar and wind energy seems to be consistent with available
resources. As seen here, the load was met by PV, BT, and the grid for 7 of
the 12 months of the year (January, February, March, April, October,
November, and December) and without purchasing from the grid for the
remaining 5 months.
Three other metaheuristic algorithms, GA, FPA, and WOA, were

Table 6
Comparative Optimal Sizing using MFOA, WOA, FPA, and GA Techniques
(Under LPSPmax=10 % Limitation).

MFOA WOA FPA GA

​ LPSPmax = %10
Execution time (sec) 403.852 451.6854 484.0282 521.4372
Wind Turbines (kW) 1 1.0722 1 1
Solar Power (kW) 1.9802 ×

103
1.9805 ×

103
1.9682 ×

103
1.9870 ×

103

Battery Units 1.7200 ×

102
2.0185 ×

102
1.9872 ×

102
1.8823 ×

102

Total Wind Energy
(kWh)

125.5744 134.6532 125.5744 125.5744

Total Solar Energy
(kWh)

2.8685 ×

106
2.8689 ×

106
2.8512 ×

106
2.8784 ×

106

Diesel Generator
Energy(kWh)

– – – –

Wasted Energy (kWh) – – – –
Total Load Demand
(kWh)

2.1776 ×

106
2.1776 ×

106
2.1776 ×

106
2.1776 ×

106

TGE – – – –
Batin (kWh) 9.8100 ×

104
9.5981 ×

104
9.7374 ×

104
9.6341 ×

104

Batout (kWh) 9.8255 ×

105
9.8977 ×

105
9.8557 ×

105
9.8824 ×

105

LCOE ($/kWh) 0.1342 0.1342 0.1342 0.1342
Grid Sale (kWh) 1.2114 ×

106
1.2038 ×

106
1.1899 ×

106
1.2154 ×

106

Grid Purchase (kWh) 4.4086 ×

105
4.3208 ×

105
4.3709 ×

105
4.3398 ×

105

TNPC ($) 3.2542 ×

106
3.2876 ×

106
3.2670 ×

106
3.2813 ×

106

REF ( %) 100 100 100 100
Annual Cost ($) 2.9214 ×

105
2.9222 ×

105
2.9226 ×

105
2.9216 ×

105

Wind Cost ($) 404.8825 434.1547 404.8825 404.8825
Solar Cost ($) 1.7826 ×

105
1.7829 ×

105
1.7719 ×

105
1.7888 105

DG Cost ($) – – – –
Battery Cost ($) 1.2291 ×

104
1.4423 ×

104
1.4199 ×

104
1.3450 ×

104

Inverter Cost ($) 3.0598 ×

103
3.0598 ×

103
3.0598 ×

103
3.0598 ×

103

Fig. 16. Average electrical load served for optimal configuration and share of HRES components.
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programmed and employed for the microgrid system design problem to
ensure the validity and reliability of the proposed MFOA in determining
the best sizing results of the grid-connected HRES. The results obtained
were compared with those from the proposed MFOA, and the conver-
gence characteristics of the algorithms were assessed. The values of ACS,
LCOE, and TNPC decreased over the course of the iterations. This in-
dicates that the optimization algorithm reduces the components of the
objective function by heading in the direction of the optimum system
size. Any reduction in the objective function was, therefore, significant,

mainly because it became possible to know more about the optimum
size. A thorough analysis of the convergence processes of the algorithms
for the hybrid microgrid system’s optimum design revealed that the
MFOA performed the optimization process quickly, reducing computa-
tion time and resource consumption while producing a better outcome.
As shown by the outcome presented in Table 3, MFOA offered the least
expensive solution in comparison to the other algorithms while pro-
ducing outcomes that were superior to those of the other algorithms.
Using the MFOA, 2.109805 × 103 kW solar panels, a 1 kW WT, and

Fig. 17. (a) Average hourly solar energy, (b) Average hourly wind energy.

Fig. 18. Input and output energy fluctuations of BT on an hourly basis.
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1.907645 × 102 batteries based on a 0.5 % LPSP were found to be the
optimum HRES optimization results. In this process, ACS was found to
be $3.1078 × 105, TNPC was $3.4721 × 106, and LCOE was $0.1427. It
should be stated that the HRES had solar panel- and BT-weighted
components because the analyses were based on KW. Additionally, en-
ergy was purchased from a 4.6728 × 105 kWh grid throughout the year.
Furthermore, 1.3085 × 106 kWh of energy sales was completed. This is
evident in this optimization variable, as it was established within the
lower (1 kW) and upper (5000 kW) limit values of the WT component. It
was concluded that MFOA and other optimization-based algorithms can
be successfully utilized to identify the best solution to the challenging
issue of microgrid design.

The plots of PV output energy in Fig. 17(a), WT output energy in
Fig. 17(b), and battery input-output energy in Fig. 18 are provided for
the optimal system configuration that was determined. The system can
be monitored for 8760 h from these plots, and the data points at each
time value t can be observed.
The SOC is a pivotal parameter for HRES. This significance arises

from the fact that the operational capacity and efficiency of the BT
components, which are utilized for energy storage in HRES, are directly
related to this value. SOC represents the current energy capacity of a BT
in percentage terms, offering crucial insights into how much energy an
HRES can generate or store. Fig. 19(a) depicts the details of the weekly
and annual SOC values for BT, while also visually representing the time

Fig. 19. a) Hourly variation of SOC, b) Average monthly variation of SOC.

Fig. 20. A year-long comparison of energy resources and electrical load demand.
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intervals in which BT achieved its minimum (SOCmin) and maximum
(SOCmax) values throughout the year. These figures are essential in
determining the periods where the system operated optimally based on

energy needs and storage capacity or when there was an increased de-
mand for energy.
The annual profile of the average SOC of the BT is shown in Fig. 19

Fig. 21. Comparison of the energy that HRES sold to the grid and that it received from the grid.

Fig. 22. HRES weekly energy analysis a) load demand, grid purchase, grid sales, WT, PV power, b) load demand, BT charge, PV power, grid sales, WT, BT discharge.
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(b). The BT component was charged at a rate of 33.66 % in January;
36.92 % in February; 56.14 % in March; 83.66 % in April; over 90 % in
May, June, July, and August; 87.62% in September; 62.07% in October;
26.5 % in November; and 21.67 % in December. In an HRES, the charge-
discharge rates of the BT component should be continuously monitored.
In this study, it was demonstrated that the SOC value of BT was generally
good, with a few exceptions. Specifically, the months of January,
November, and December showed deviations due to the scarcity of
natural resources. The scarcity of natural resources during these months
can be attributed to seasonal variations, where certain renewable re-
sources such as solar or wind might be less abundant. Low solar radia-
tion and wind speed values were observed in October, November, and
December, leading to the SOC value of BT dropping by 20 % in these
months, as depicted in the figures. A consistent and high SOC value for
the BT ensures that the system operates efficiently, meeting the energy
demands without straining the storage components. Fig. 16 shows that,
in addition to the PV and BT components, the load demand in January,
November, and December was primarily met by the energy purchased
from the grid. Maintaining an optimal SOC value is vital not only for
ensuring an uninterrupted energy supply but also for prolonging the life
span and efficiency of the BT components in an HRES.
Fig. 20 provides information on the resources used to meet the

hourly energy demand throughout the year (8760 h). More detailed and
numerical data can be obtained by zooming into a graphical time series.
Fig. 21 shows the time periods over the course of the year when the
energy was drawn from and sold to the grid. In this figure, the annual

energy value of 1.2114 × 106 kWh sold to the grid and 4.4086 × 105

kWh purchased from the grid are presented.
Figs. 22(a) and (b) present a weekly comparison analysis of the load,

WT, PV, BT charge-discharge values, and energy purchased from the
grid. The analyses focused on specific periods that were designated
within the system’s operation. As observed in the figures, the energy
from the grid and the BT charge-discharge management processes
worked in tandem to offset power fluctuations from renewable re-
sources, ensuring that the load demand was consistently addressed.
Generally, an elevation in the TNPC and COE values led to a significant
reduction in the LPSP, highlighting the trade-off between system reli-
ability and economic efficiency.
Tables 4, 5, and 6 present the optimal system sizing results derived

using the MFOA, WOA, FPA, and GA optimization methodologies for
distinct LPSP levels: 2 %, 5 %, and 10 %. A cursory examination reveals
only marginal variations in parameters such as wind turbines, solar
power, and BT units across the different optimization techniques. In
contrast, parameters like total wind energy, total solar energy, and total
load demand largely remain invariant. Importantly, all methodologies
consistently yield an REF value of 100 %, emphasizing the uniform
reliability of energy provision across these techniques.
A closer look at the economic indicators, particularly LCOE, grid

sales, grid purchases, and TNPC, suggests that optimization techniques,
when adjusted for a specific LPSP level, produce similar economic out-
comes. This underscores the analogous economic performance rendered
by these distinct methodologies and brings to light subtle variances in

Fig. 23. Convergence analysis of ACS for LPSP (a) 0.5 %, (b) 2 %, (c) 5 %, (d) 10 %.
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sizing parameters influenced by different LPSP values.
In summary, the tables confirm that, based on a designated LPSP

value, various optimization techniques produce comparable system-
sizing outcomes. This congruence is most pronounced in the economic
parameters, although slight differences in some sizing parameters are
noticeable across LPSP values.
The results of the comparisons of the convergence performances of

the algorithms at various LPSP values are shown in Fig. 23. In com-
parison to the other algorithms, WOA and MFOA exhibited a faster
convergence towards the objective function, as seen in Figs. 23(a), (b),
(c), and (d). WOA converged at the 10th iteration of the optimization
process, whereas MFOA converged at the 13th iteration. After iteration
number 26, MFOA surpassed WOA and quickly achieved the optimum
outcome. Even though similar outcomes were attained, MFOA

Fig. 23. (continued).

Fig. 24. Effect of different LPSP values on TNPC and LCOE.
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completed the optimization process, as shown in Fig. 23(d), by
achieving the lowest ACS, TNPC, and LCOE values and performing
better than all other algorithms.
This convergence behavior confirms the superior exploitation capa-

bility of MFOA in the defined search space, reflecting its stability and
robustness across varying reliability thresholds.
Fig. 24 illustrates the variations in TNPC and LCOE results for

different LPSP values. An evident inverse relationship emerged between
LPSP values and both LCOE and TNPC values. This inverse trend has
important ramifications for understanding the interplay between system
reliability (as indicated by the LPSP) and the economic feasibility of the
energy system. Previous studies have often hinted at this relationship,
but our findings provide a more nuanced understanding, especially in
the context of our specific system setup. A sensitivity analysis focusing
on interest rate changes was conducted to delve deeper into the eco-
nomic intricacies of the system. The ensuing results, depicted in Fig. 25,
show an increase in the ACS value, whereas the TNPC value exhibits a
decline as the interest rate surges. This behavior underscores the delicate
balance between financial parameters and system costs, a topic that has
been a focal point in the RE finance literature. As interest rates reflect
the time value of money and risk, their influence on RE system eco-
nomics is pivotal, and our findings shed light on some of the subtle
dynamics at play.
The comparison of economic and environmental outcomes across

varying LPSP levels reveals a clear trade-off: as system reliability

decreases (i.e., LPSP increases), economic performance improves
through reduced LCOE and TNPC, while maintaining an REF of 100 %.
This suggests that even when minor reliability compromises are intro-
duced, the environmental sustainability of the system remains uncom-
promised. This indicates that economic savings can be achieved without
compromising environmental integrity, provided that the system is
properly constrained and configured. These observations underscore the
system’s robustness and suitability for practical implementation sce-
narios where budget constraints and sustainability targets must be
balanced.
A cost comparison of the components of the optimized HRES was

conducted, and the results are shown in Fig. 26. The proposed MFOA
method produced the following optimal values: $404.8825 for WT,
$1.7826× 105 for PV, $1.2291× 104 for BT, $3.0598× 103 for inverter,
and $2.9214 × 105 for total annual cost.

6. Conclusions and future research directions

This study presented an advanced optimization approach based on
the MFOA for the optimal design of a grid-connected HRES consisting of
PV panels, WT, a DG, and BTS. The optimization framework incorpo-
rated the LPSP as a reliability constraint and aimed to minimize the
TNPC by determining the optimal sizing of all system components. The
results demonstrated that the MFOA consistently outperformed the
other metaheuristic algorithms—namely, the WOA, FPA, and GA—in

Fig. 25. Effect of different interests rate on ACS and TNPC.

Fig. 26. Costs results of PV/WT/DG/BT for grid-connected HRES design.
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terms of convergence speed, solution stability, renewable energy utili-
zation, and computational efficiency across all evaluated LPSP levels.
While the PV/WT/BT configuration at higher LPSP values (e.g., 10 %)
yielded the absolute lowest LCOE of $0.1342/kWh, the MFOA achieved
a fully renewable (REF = 100 %) solution without DG operation at an
LCOE of $0.1443/kWh.
According to the results of this study, the LCOE of the grid-connected

system was 33 % lower than that of the off-grid model. When LPSP was
chosen as 0.5 %, the HRES showed values of TNPC: $3.5085× 106, ACS:
$3.1426 × 105, and $0.1443⁄kWh; when LPSP was chosen as 2 %, it
showed values of TNPC: $3.4721 × 106, ACS: $3.1078 × 105, and
$0.1427⁄kWh; when LPSP was chosen as 5 %, it showed values of TNPC:
$3.3920 × 106, ACS: $3.0382 × 105, and $0.1395⁄kWh, and when LPSP
was chosen as 10 %, it showed values of TNPC: $3.2542 × 106, ACS:
$2.9214× 105, and $0.1342 ⁄kWh. The analyses of different LPSP targets
showed that as the LPSP values rose, the ACS, NPC, and LCOE values
dropped. Additionally, profit was obtained by selling 1.2114 × 106 kWh
of energy to the grid annually. In the optimal solutions obtained with
MFOA, the DG was not used, and the load demand was fully satisfied
with a 100 % renewable fraction, resulting in zero overall emissions.
Every algorithm employed in the study was able to assess trends

toward the optimum results. When an algorithm approaches the opti-
mum solution, the density of the search space can be controlled in a self-
adaptive manner; alternatively, when it gets farther away from the op-
timum solution, it can be expanded to allow for the discovery of new
search points. It is clear at this point that our proposed MFOA method
produces results that are excellently competitive when it comes to
resolving the HRES sizing problem. It is anticipated that it will also be
applied to more difficult problems in future research.
In addition, this study highlights the effectiveness of the optimiza-

tion methods explored, particularly for hybrid grid-connected renew-
able energy systems. While the findings provide a solid foundation for
understanding system dynamics, further research is needed to explore
the scalability and adaptability of these results across different envi-
ronmental, economic, and technical settings. Future work could focus on
integrating advanced stochastic models to account for uncertainties in
renewable energy sources such as PV and wind, especially in regions
with highly variable weather conditions. Moreover, examining the
integration of emerging technologies like smart grids and the impacts of
regulatory policies on renewable energy adoption would be valuable
areas of exploration. The continued refinement of the MFOA algorithm
to improve computational efficiency for larger, more complex systems,
as well as its application to multi-objective optimization problems, could
also be pursued. Finally, real-world implementation and validation of
these optimization methods through pilot projects would provide in-
sights into practical challenges and opportunities, helping policymakers
and industry stakeholders better integrate renewable energy systems.
These future directions present promising opportunities to further
advance the design and efficiency of hybrid energy systems.
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