Electrospun Carbon Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes     
Yazarlar (6)
Christopher A Bonino
Liwen Ji
Zhan Lin
Xiangwu Zhang
Saad A Khan
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı ACS Applied Materials & Interfaces
Dergi ISSN 1944-8244 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 07-2011
Cilt No 3
Sayı 7
Sayfalar 2534 / 2542
DOI Numarası 10.1021/am2004015
Makale Linki http://pubs.acs.org/doi/abs/10.1021/am2004015
Özet
Composite carbon-tin oxide (C-SnO(2)) nanofibers are prepared by two methods and evaluated as anodes in lithium-ion battery half cells. Such an approach complements the long cycle life of carbon with the high lithium storage capacity of tin oxide. In addition, the high surface-to-volume ratio of the nanofibers improves the accessibility for lithium intercalation as compared to graphite-based anodes, while eliminating the need for binders or conductive additives. The composite nanofibrous anodes have first discharge capacities of 788 mAh g(-1) at 50 mA g(-1) current density, which are greater than pure carbon nanofiber anodes, as well as the theoretical capacity of graphite (372 mAh g(-1)), the traditional anode material. In the first protocol to fabricate the C-SnO(2) composites, tin sulfate is directly incorporated within polyacrylonitrile (PAN) nanofibers by electrospinning. During a thermal treatment the tin salt is converted to tin oxide and the polymer is carbonized, yielding carbon-SnO(2) nanofibers. In the second approach, we soak the nanofiber mats in tin sulfate solutions prior to the final thermal treatment, thereby loading the outer surfaces with SnO(2) nanoparticles and raising the tin content from 1.9 to 8.6 wt %. Energy-dispersive spectroscopy and X-ray diffraction analyses confirm the formation of conversion of tin sulfate to tin oxide. Furthermore, analysis with Raman spectroscopy reveals that the additional salt soak treatment from the second fabrication approach increases in the disorder of the carbon structure, as compared to the first approach. We also discuss the performance of our C-SnO(2) compared with its theoretical capacity and other nanofiber electrode composites previously reported in the literature.
Anahtar Kelimeler
composite nanofibers | electrospinning | lithium-ion battery | tin oxide | anode